5 research outputs found

    Subband modeling for spoofing detection in automatic speaker verification

    Get PDF
    Spectrograms - time-frequency representations of audio signals - have found widespread use in neural network-based spoofing detection. While deep models are trained on the fullband spectrum of the signal, we argue that not all frequency bands are useful for these tasks. In this paper, we systematically investigate the impact of different subbands and their importance on replay spoofing detection on two benchmark datasets: ASVspoof 2017 v2.0 and ASVspoof 2019 PA. We propose a joint subband modelling framework that employs n different sub-networks to learn subband specific features. These are later combined and passed to a classifier and the whole network weights are updated during training. Our findings on the ASVspoof 2017 dataset suggest that the most discriminative information appears to be in the first and the last 1 kHz frequency bands, and the joint model trained on these two subbands shows the best performance outperforming the baselines by a large margin. However, these findings do not generalise on the ASVspoof 2019 PA dataset. This suggests that the datasets available for training these models do not reflect real world replay conditions suggesting a need for careful design of datasets for training replay spoofing countermeasures

    Deep Generative Variational Autoencoding for Replay Spoof Detection in Automatic Speaker Verification

    Get PDF
    Automatic speaker verification (ASV) systems are highly vulnerable to presentation attacks, also called spoofing attacks. Replay is among the simplest attacks to mount - yet difficult to detect reliably. The generalization failure of spoofing countermeasures (CMs) has driven the community to study various alternative deep learning CMs. The majority of them are supervised approaches that learn a human-spoof discriminator. In this paper, we advocate a different, deep generative approach that leverages from powerful unsupervised manifold learning in classification. The potential benefits include the possibility to sample new data, and to obtain insights to the latent features of genuine and spoofed speech. To this end, we propose to use variational autoencoders (VAEs) as an alternative backend for replay attack detection, via three alternative models that differ in their class-conditioning. The first one, similar to the use of Gaussian mixture models (GMMs) in spoof detection, is to train independently two VAEs - one for each class. The second one is to train a single conditional model (C-VAE) by injecting a one-hot class label vector to the encoder and decoder networks. Our final proposal integrates an auxiliary classifier to guide the learning of the latent space. Our experimental results using constant-Q cepstral coefficient (CQCC) features on the ASVspoof 2017 and 2019 physical access subtask datasets indicate that the C-VAE offers substantial improvement in comparison to training two separate VAEs for each class. On the 2019 dataset, the C-VAE outperforms the VAE and the baseline GMM by an absolute 9-10% in both equal error rate (EER) and tandem detection cost function (t-DCF) metrics. Finally, we propose VAE residuals --- the absolute difference of the original input and the reconstruction as features for spoofing detection. The proposed frontend approach augmented with a convolutional neural network classifier demonstrated substantial improvement over the VAE backend use case

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems

    Secure and Usable Behavioural User Authentication for Resource-Constrained Devices

    Full text link
    Robust user authentication on small form-factor and resource-constrained smart devices, such as smartphones, wearables and IoT remains an important problem, especially as such devices are increasingly becoming stores of sensitive personal data, such as daily digital payment traces, health/wellness records and contact e-mails. Hence, a secure, usable and practical authentication mechanism to restrict access to unauthorized users is a basic requirement for such devices. Existing user authentication methods based on passwords pose a mental demand on the user's part and are not secure. Behavioural biometric based authentication provides an attractive means, which can replace passwords and provide high security and usability. To this end, we devise and study novel schemes and modalities and investigate how behaviour based user authentication can be practically realized on resource-constrained devices. In the first part of the thesis, we implemented and evaluated the performance of touch based behavioural biometric on wearables and smartphones. Our results show that touch based behavioural authentication can yield very high accuracy and a small inference time without imposing huge resource requirements on the wearable devices. The second part of the thesis focus on designing a novel hybrid scheme named BehavioCog. The hybrid scheme combined touch gestures (behavioural biometric) with challenge-response based cognitive authentication. Touch based behavioural authentication is highly usable but is prone to observation attacks. While cognitive authentication schemes are highly resistant to observation attacks but not highly usable. The hybrid scheme improves the usability of cognitive authentication and improves the security of touch based behavioural biometric at the same time. Next, we introduce and evaluate a novel behavioural biometric modality named BreathPrint based on an acoustics obtained from individual's breathing gestures. Breathing based authentication is highly usable and secure as it only requires a person to breathe and low observability makes it secure against spoofing and replay attacks. Our investigation with BreathPrint showed that it could be used for efficient real-time authentication on multiple standalone smart devices especially using deep learning models
    corecore