305,220 research outputs found

    COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL SYSTEMS

    Get PDF
    The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system.* However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered. A conjecture is formulated that suggests the possibility of employing an algebraic-topological, "quantum" computer (Baianu, 1971b) for analogous and symbolic simulations of biological systems that may include chaotic processes that are not, in genral, either recursively or digitally computable. Depending on the biological network being modelled, such as the Human Genome/Cell Interactome or a trillion-cell Cognitive Neural Network system, the appropriate logical structure for such simulations might be either the Quantum MV-Logic (QMV) discussed in recent publications (Chiara, 2004, and references cited therein)or Lukasiewicz Logic Algebras that were shown to be isomorphic to MV-logic algebras (Georgescu et al, 2001)

    GPU-powered Simulation Methodologies for Biological Systems

    Full text link
    The study of biological systems witnessed a pervasive cross-fertilization between experimental investigation and computational methods. This gave rise to the development of new methodologies, able to tackle the complexity of biological systems in a quantitative manner. Computer algorithms allow to faithfully reproduce the dynamics of the corresponding biological system, and, at the price of a large number of simulations, it is possible to extensively investigate the system functioning across a wide spectrum of natural conditions. To enable multiple analysis in parallel, using cheap, diffused and highly efficient multi-core devices we developed GPU-powered simulation algorithms for stochastic, deterministic and hybrid modeling approaches, so that also users with no knowledge of GPUs hardware and programming can easily access the computing power of graphics engines.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    A framework and simulation engine for studying artificial life

    Get PDF
    The area of computer-generated artificial life-forms is a relatively recent field of inter-disciplinary study that involves mathematical modelling, physical intuition and ideas from chemistry and biology and computational science. Although the attribution of “life” to non biological systems is still controversial, several groups agree that certain emergent properties can be ascribed to computer simulated systems that can be constructed to “live” in a simulated environment. In this paper we discuss some of the issues and infrastructure necessary to construct a simulation laboratory for the study of computer generated artificial life-forms. We review possible technologies and present some preliminary studies based around simple models

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page

    Parallel Load Balancing Strategies for Ensembles of Stochastic Biochemical Simulations

    Get PDF
    The evolution of biochemical systems where some chemical species are present with only a small number of molecules, is strongly influenced by discrete and stochastic effects that cannot be accurately captured by continuous and deterministic models. The budding yeast cell cycle provides an excellent example of the need to account for stochastic effects in biochemical reactions. To obtain statistics of the cell cycle progression, a stochastic simulation algorithm must be run thousands of times with different initial conditions and parameter values. In order to manage the computational expense involved, the large ensemble of runs needs to be executed in parallel. The CPU time for each individual task is unknown before execution, so a simple strategy of assigning an equal number of tasks per processor can lead to considerable work imbalances and loss of parallel efficiency. Moreover, deterministic analysis approaches are ill suited for assessing the effectiveness of load balancing algorithms in this context. Biological models often require stochastic simulation. Since generating an ensemble of simulation results is computationally intensive, it is important to make efficient use of computer resources. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms when applied to large ensembles of stochastic biochemical simulations. Two particular load balancing strategies (point-to-point and all-redistribution) are discussed in detail. Simulation results with a stochastic budding yeast cell cycle model confirm the theoretical analysis. While this work is motivated by cell cycle modeling, the proposed analysis framework is general and can be directly applied to any ensemble simulation of biological systems where many tasks are mapped onto each processor, and where the individual compute times vary considerably among tasks

    Behavioral simulation and synthesis of biological neuron systems using synthesizable VHDL

    No full text
    Neurons are complex biological entities which form the basis of nervous systems. Insight can be gained into neuron behavior through the use of computer models and as a result many such models have been developed. However, there exists a trade-off between biological accuracy and simulation time with the most realistic results requiring extensive computation. To address this issue, a novel approach is described in this paper that allows complex models of real biological systems to be simulated at a speed greater than real time and with excellent accuracy. The approach is based on a specially developed neuron model VHDL library which allows complex neuron systems to be implemented on field programmable gate array (FPGA) hardware. The locomotion system of the nematode Caenorhabditis elegans is used as a case study and the measured results show that the real time FPGA based implementation performs 288 times faster than traditional ModelSim simulations for the same accuracy
    corecore