127,646 research outputs found
Quantitative analysis of regulatory flexibility under changing environmental conditions
The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock
Rhythms of Locomotion Expressed by Limulus polyphemus, the American Horseshoe Crab: II. Relationship to Circadian Rhythms of Visual Sensitivity
In the laboratory, horseshoe crabs express a circadian rhythm of visual sensitivity as well as daily and circatidal rhythms of locomotion. The major goal of this investigation was to determine whether the circadian clock underlying changes in visual sensitivity also modulates locomotion. To address this question, we developed a method for simultaneously recording changes in visual sensitivity and locomotion. Although every animal (24) expressed consistent circadian rhythms of visual sensitivity, rhythms of locomotion were more variable: 44% expressed a tidal rhythm, 28% were most active at night, and the rest lacked statistically significant rhythms. When exposed to artificial tides, 8 of 16 animals expressed circatidal rhythms of locomotion that continued after tidal cycles were stopped. However, rhythms of visual sensitivity remained stable and showed no tendency to be influenced by the imposed tides or locomotor activity. These results indicate that horseshoe crabs possess at least two biological clocks: one circadian clock primarily used for modulating visual sensitivity, and one or more clocks that control patterns of locomotion. This arrangement allows horseshoe crabs to see quite well while mating during both daytime and nighttime high tides
A 2-dimensional Geometry for Biological Time
This paper proposes an abstract mathematical frame for describing some
features of biological time. The key point is that usual physical (linear)
representation of time is insufficient, in our view, for the understanding key
phenomena of life, such as rhythms, both physical (circadian, seasonal ...) and
properly biological (heart beating, respiration, metabolic ...). In particular,
the role of biological rhythms do not seem to have any counterpart in
mathematical formalization of physical clocks, which are based on frequencies
along the usual (possibly thermodynamical, thus oriented) time. We then suggest
a functional representation of biological time by a 2-dimensional manifold as a
mathematical frame for accommodating autonomous biological rhythms. The
"visual" representation of rhythms so obtained, in particular heart beatings,
will provide, by a few examples, hints towards possible applications of our
approach to the understanding of interspecific differences or intraspecific
pathologies. The 3-dimensional embedding space, needed for purely mathematical
reasons, allows to introduce a suitable extra-dimension for "representation
time", with a cognitive significance.Comment: Presented in an invited Lecture, conference "Biologie e selezioni
naturali", Florence, December 4-8, 200
Circadian and Ultradian Rhythms of Free Glucocorticoid Hormone Are Highly Synchronized between the Blood, the Subcutaneous Tissue, and the Brain
Total glucocorticoid hormone levels in plasma of various species, including humans, follow a circadian rhythm that is made up from an underlying series of hormone pulses. In blood most of the glucocorticoid is bound to corticosteroid-binding globulin and albumin, resulting in low levels of free hormone. Although only the free fraction is biologically active, surprisingly little is known about the rhythms of free glucocorticoid hormones. We used single-probe microdialysis to measure directly the free corticosterone levels in the blood of freely behaving rats. Free corticosterone in the blood shows a distinct circadian and ultradian rhythm with a pulse frequency of approximately one pulse per hour together with an increase in hormone levels and pulse height toward the active phase of the light/dark cycle. Similar rhythms were also evident in the subcutaneous tissue, demonstrating that free corticosterone rhythms are transferred from the blood into peripheral target tissues. Furthermore, in a dual-probe microdialysis study, we demonstrated that the circadian and ultradian rhythms of free corticosterone in the blood and the subcutaneous tissue were highly synchronized. Moreover, free corticosterone rhythms were also synchronous between the blood and the hippocampus. These data demonstrate for the first time an ultradian rhythm of free corticosterone in the blood that translates into synchronized rhythms of free glucocorticoid hormone in peripheral and central tissues. The maintenance of ultradian rhythms across tissue barriers in both the periphery and the brain has important implications for research into aberrant biological rhythms in disease and for the development of improved protocols for glucocorticoid therapy
Stochastic Feedback and the Regulation of Biological Rhythms
We propose a general approach to the question of how biological rhythms
spontaneously self-regulate, based on the concept of ``stochastic feedback''.
We illustrate this approach by considering the neuroautonomic regulation of the
heart rate. The model generates complex dynamics and successfully accounts for
key characteristics of cardiac variability, including the power spectrum,
the functional form and scaling of the distribution of variations, and
correlations in the Fourier phases. Our results suggest that in healthy systems
the control mechanisms operate to drive the system away from extreme values
while not allowing it to settle down to a constant output.Comment: 15 pages, latex2e using rotate and epsf, with 4 ps figures. Submitted
to PR
Recommended from our members
Infectious rhythms
A commentary on the 1st Auckland Triennial, the chapter engages with the work of artists John Lyall, Mariele Neudecker, Michael Parekowhai and Bill Hammond in order to explore the biological and cultural dimensions of inhabiting an island. It links together processes of biological species introduction (and bio-invasion) with cultural transmission, suggesting that there are similar dynamics at work in the biological and cultural realms. As a site of `infectious rhythms' of invasion, catastrophe and creativity, the material experience of island life, it is suggested, is far from that of the tranquillity and timelessness often imagined by distant metropolitan centres
Circadian rhythms and hormonal homeostasis: Pathophysiological implications
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases
Complex dynamics of the biological rhythms: gallbladder and heart cases
A theoretical analysis of the mechanisms underlying the dynamics of
gallbladder and heart pulsation could clarify the question regarding the
classification as chaotic of the associated behaviour, eventually related to a
normal and healthy beat; this analysis is particularly relevant in view of the
control of dynamics bifurcations arising in situations of disease. In this work
is presented a summary of the DFA method applied to gallbladder volume data for
a modest number of healthy and ill patients: the presence of signal correlation
is found in both cases, but the fit shapes differ from some critical values.Comment: 3 pages, 8 figures, to appear on Physica
Transient Resetting: A Novel Mechanism for Synchrony and Its Biological Examples
The study of synchronization in biological systems is essential for the
understanding of the rhythmic phenomena of living organisms at both molecular
and cellular levels. In this paper, by using simple dynamical systems theory,
we present a novel mechanism, named transient resetting, for the
synchronization of uncoupled biological oscillators with stimuli. This
mechanism not only can unify and extend many existing results on (deterministic
and stochastic) stimulus-induced synchrony, but also may actually play an
important role in biological rhythms. We argue that transient resetting is a
possible mechanism for the synchronization in many biological organisms, which
might also be further used in medical therapy of rhythmic disorders. Examples
on the synchronization of neural and circadian oscillators are presented to
verify our hypothesis.Comment: 17 pages, 7 figure
- …
