1,307 research outputs found

    ISMB 2008 Toronto

    Get PDF
    The International Society for Computational Biology (ISCB) presents the Sixteenth International Conference on Intelligent Systems for Molecular Biology (ISMB 2008), to be held in Toronto, Canada, July 19–23, 2008. Now in the final phases of scheduling selected presentations, demonstrations, and posters, the organizers are preparing what will likely be recognized as the premier conference on computational biology in 2008. ISMB 2008 (http://www.iscb.org/ismb2008/) will follow the road paved by the ISMB/ ECCB 2007 (http://www.iscb.org/ ismbeccb2007/) in Vienna in the attempt to specifically encourage increased participation from previously under-represented disciplines of computational biology. This conference will feature the best of the computer and life sciences through a variety of core sessions running in multiple parallel tracks, along with single-tracked Keynote Presentations, posters on display throughout the duration of the conference, and an extensive commercial exposition. The first day (July 18) of the meeting is reserved for two-day Special Interest Group (SIG) and Satellite meetings, the second day (July 19) runs SIGs for the first time in parallel with Tutorials and the Student Council Symposium, and for the first time two SIGs are running in parallel with the main ISMB meeting (July 20–23)Other Research Uni

    Health Fetishism Among The Nacirema: A Fugue On Jenny Reardon’s The Postgenomic Condition: Ethics, Justice, and Knowledge After The Genome (Chicago University Press, 2017) And Isabelle Stengers’ Another Science Is Possible: A Manifesto For Slow Science (Polity Press, 2018)

    Get PDF
    Personalized medicine has become a goal of genomics and of health policy makers. This article reviews two recent books that are highly critical of this approach, finding their arguments very thoughtful and important. According to Stengers, biology’s rush to become a science of genome sequences has made it part of the “speculative economy of promise.” Reardon claims that the postgenomic condition is the attempt to find meaning in all the troves of data that have been generated. The current paper attempts to extend these arguments by showing that scientific alternatives such as ecological developmental biology and the tissue organization field theory of cancer provide evidence demonstrating that genomic data alone is not sufficient to explain the origins of common disease. What does need to be explained is the intransience of medical scientists to recognize other explanatory models beside the “-omics” approaches based on computational algorithms. To this end, various notions of commodity and religious fetishism are used. This is not to say that there is no place for Big Data and genomics. Rather, these methodologies should have a definite place among others. These books suggest that Big Data genomics is like the cancer it is supposed to conquer. It has expanded unregulated and threatens to kill the body in which it arose

    What’s So Special About Special Interest Groups in ASIST?

    Get PDF

    Genomics and proteomics: a signal processor's tour

    Get PDF
    The theory and methods of signal processing are becoming increasingly important in molecular biology. Digital filtering techniques, transform domain methods, and Markov models have played important roles in gene identification, biological sequence analysis, and alignment. This paper contains a brief review of molecular biology, followed by a review of the applications of signal processing theory. This includes the problem of gene finding using digital filtering, and the use of transform domain methods in the study of protein binding spots. The relatively new topic of noncoding genes, and the associated problem of identifying ncRNA buried in DNA sequences are also described. This includes a discussion of hidden Markov models and context free grammars. Several new directions in genomic signal processing are briefly outlined in the end

    Planning Bioinformatics Education and Information Services in an Academic Health Sciences Library

    Get PDF
    This article describes a planning process for the development of bioinformatics education and information services in an academic health sciences library. The project’s five goals were to:(1) understand the changing environment for information related to bioinformatics;(2) understand the information needs of faculty whose work involves bioinformatics; (3) explore potential service offerings; (4) anticipate factors influencing the implementation of new services; and (5) envision strategies for recruiting and training information professionals to fill these roles. The authors describe the library’s practice environment and review recent research on the information needs of biomedical researchers and clinicians. A variety of potential library-based services in relation to bioinformatics are enumerated, and the institutional, environmental, and personnel factors affecting the deployment of services are examined. Finally, the authors describe the educational and training context of the library, and explore potential roles for librarians and information professionals in the context of bioinformatics services

    Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information

    Get PDF
    Funding Information: This work was supported by the National Institute of Mental Health / U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium ), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience . Statistical analyses were carried out on the LISA/Genetic Cluster Computer ( https://userinfo.surfsara.nl/systems/lisa ) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. Funding Information: MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc., RallyPoint Networks, Inc., Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Funding Information: This work was supported by the National Institute of Mental Health/ U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience. Statistical analyses were carried out on the LISA/Genetic Cluster Computer (https://userinfo.surfsara.nl/systems/lisa) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. This material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the U.S. Department of the Army or the Department of Defense. We thank the investigators who comprise the PGC-PTSD working group and especially the more than 206,000 research participants worldwide who shared their life experiences and biological samples with PGC-PTSD investigators. We thank Mark Zervas for his critical input. Full acknowledgments are in Supplement 1. MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc. RallyPoint Networks, Inc. Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled ?Genotype-guided dosing of opioid agonists,? filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Publisher Copyright: © 2021 Society of Biological PsychiatryBackground: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods.publishersversionpublishe
    corecore