534,053 research outputs found
Rust-Bio - a fast and safe bioinformatics library
We present Rust-Bio, the first general purpose bioinformatics library for the
innovative Rust programming language. Rust-Bio leverages the unique combination
of speed, memory safety and high-level syntax offered by Rust to provide a fast
and safe set of bioinformatics algorithms and data structures with a focus on
sequence analysis
Simulated single molecule microscopy with SMeagol
SMeagol is a software tool to simulate highly realistic microscopy data based
on spatial systems biology models, in order to facilitate development,
validation, and optimization of advanced analysis methods for live cell single
molecule microscopy data. Availability and Implementation: SMeagol runs on
Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion
simulations. Documentation, source code, and binaries for recent versions of
Mac OS, Windows, and Ubuntu Linux can be downloaded from
http://smeagol.sourceforge.net.Comment: v2: 14 pages including supplementary text. Pre-copyedited,
author-produced version of an application note published in Bioinformatics
following peer review. The version of record, and additional supplementary
material is available online at:
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw10
Bioinformatics Databases: State of the Art and Research Perspectives
Bioinformatics or computational biology, i.e. the application of mathematical and computer science methods to solving problems in molecular biology that require large scale data, computation, and analysis, is a research area currently receiving a considerable attention. Databases play an essential role in molecular biology and consequently in bioinformatics. molecular biology data are often relatively cheap to produce, leading to a proliferation of databases: the number of bioinformatics databases accessible worldwide probably lies between 500 and 1.000. Not only molecular biology data, but also molecular biology literature and literature references are stored in databases. Bioinformatics databases are often very large (e.g. the sequence database GenBank contains more than 4 × 10 6 nucleotide sequences) and in general grows rapidly (e.g. about 8000 abstracts are added every month to the literature database PubMed). Bioinformatics databases are heterogeneous in their data, in their data modeling paradigms, in their management systems, and in the data analysis tools they supports. Furthermore, bioinformatics databases are often implemented, queried, updated, and managed using methods rarely applied for other databases. This presentation aims at introducing in current bioinformatics databases, stressing their aspects departing from conventional databases. A more detailed survey can be found in [1] upon which thi
Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics
The Random Forest (RF) algorithm by Leo Breiman has become a
standard data analysis tool in bioinformatics. It has shown excellent performance in settings where the number of variables is much larger than the number of observations, can cope with complex interaction structures as well as highly correlated variables and returns measures of variable importance. This paper synthesizes ten years of RF development with emphasis on applications to bioinformatics and computational biology. Special attention is given to practical aspects such as the selection of parameters, available RF implementations, and important pitfalls and biases of RF and its variable importance measures (VIMs). The paper surveys recent developments of the methodology relevant to bioinformatics as well as some representative examples of RF applications in this context and possible directions for future research
Computational Strategies for Scalable Genomics Analysis.
The revolution in next-generation DNA sequencing technologies is leading to explosive data growth in genomics, posing a significant challenge to the computing infrastructure and software algorithms for genomics analysis. Various big data technologies have been explored to scale up/out current bioinformatics solutions to mine the big genomics data. In this review, we survey some of these exciting developments in the applications of parallel distributed computing and special hardware to genomics. We comment on the pros and cons of each strategy in the context of ease of development, robustness, scalability, and efficiency. Although this review is written for an audience from the genomics and bioinformatics fields, it may also be informative for the audience of computer science with interests in genomics applications
PCA and K-Means decipher genome
In this paper, we aim to give a tutorial for undergraduate students studying
statistical methods and/or bioinformatics. The students will learn how data
visualization can help in genomic sequence analysis. Students start with a
fragment of genetic text of a bacterial genome and analyze its structure. By
means of principal component analysis they ``discover'' that the information in
the genome is encoded by non-overlapping triplets. Next, they learn how to find
gene positions. This exercise on PCA and K-Means clustering enables active
study of the basic bioinformatics notions. Appendix 1 contains program listings
that go along with this exercise. Appendix 2 includes 2D PCA plots of triplet
usage in moving frame for a series of bacterial genomes from GC-poor to GC-rich
ones. Animated 3D PCA plots are attached as separate gif files. Topology
(cluster structure) and geometry (mutual positions of clusters) of these plots
depends clearly on GC-content.Comment: 18 pages, with program listings for MatLab, PCA analysis of genomes
and additional animated 3D PCA plot
- …
