8 research outputs found
Analisis Pengaruh Suhu terhadap Viskositas dan Densitas pada Biodiesel Microemulsi Hasil Catalytic Cracking dari Minyak Kelapa
Penelitian ini menganalisis pengaruh suhu terhadap viskositas dan densitas biodiesel mikroemulsi hasil catalytic cracking minyak kelapa menggunakan katalis zeolit. Biodiesel diproduksi dengan mencampur minyak kelapa, etanol, dan butanol sebagai surfaktan, kemudian dilakukan catalytic cracking pada suhu 50°C, 75°C, 95°C, 125°C, dan 150°C. Katalis zeolit diaktivasi dengan perendaman dalam HCl 32% dan dikalsinasi pada 500°C selama 3 jam. Hasil menunjukkan viskositas menurun signifikan dari 15,24 centistokes (awal) menjadi 10,48 centistokes pada 150°C, menunjukkan suhu tinggi efektif memecah molekul hidrokarbon berat. Densitas mengalami fluktuasi kecil, dengan nilai tertinggi 0,879 gr/cm³ (75°C) dan terendah 0,876 gr/cm³ (125°C), mengindikasikan pembentukan senyawa lebih ringan tanpa perubahan densitas signifikan. Analisis FTIR mengungkap degradasi sebagian molekul ester pada 150°C, ditandai penurunan intensitas puncak serapan gugus karbonil (C=O) dan C-O, serta perubahan rantai hidrokarbon. Suhu 150°C terbukti optimal, menghasilkan biodiesel dengan viskositas lebih rendah dan struktur stabil. Penelitian ini menunjukkan catalytic cracking menggunakan zeolit sebagai solusi efektif dan ramah lingkungan untuk meningkatkan kualitas biodiesel mikroemulsi dari minyak kelapa
Optimization Of Used Cooking Oil Into Biodiesel With Sulfated Zirconia Zeolit Catalyst
Used cooking oil is oil that come from oil frying foodstuffs. The difference of used cooking oil with new vegetable oil lies in the composition of new saturated fatty acids and unsaturated. Used cooking oil has saturated fatty acid that is greater than new vegetable oil. As a result Used cooking oil is very dangerous when consumed and when discharged into the environment and will pollute the around environment. Therefore Used cooking oil is suitable to be used for biodiesel feedstock. Utilization of Used cooking oil as raw material for biodiesel is one of the ways to reduce waste that produce economic value and creating an alternative fuel for diesel fuel substitute. Used cooking oil can be processed into biodiesel by transesterification with methanol using zeolite sulfated zirconia catalyst. Used cooking oil containing free fatty acids of 1,64% and a density of 0,911 g / ml Transesterification of Used cooking oil with sulfated zirconia zeolit catalyst was conducted in a batch reactor with maximum volume of 1000 mL equipped with a heater, thermometer, stirrer, and tap of the sample taker. Variables which were studied in this research include the ratio of methanol to oil (1:4, 1:6, 1:9, 1:12), reaction temperature (100OC, 110OC, 120OC ), and concentration of catalyst (0,5%, 1%, 2%). Condition process that was optimum was achieved at the ratio of oil to methanol 1:6, 2% catalyst concentration, reaction temperature of 120oC, and reaction time for 120 minutes with a conversion of 71.62%
Optimization Of Used Cooking Oil Into Biodiesel With Sulfated Zirconia Zeolit Catalyst
Used cooking oil is oil that come from oil frying foodstuffs. The difference of used cooking oil with new vegetable oil lies in the composition of new saturated fatty acids and unsaturated. Used cooking oil has saturated fatty acid that is greater than new vegetable oil. As a result Used cooking oil is very dangerous when consumed and when discharged into the environment and will pollute the around environment. Therefore Used cooking oil is suitable to be used for biodiesel feedstock. Utilization of Used cooking oil as raw material for biodiesel is one of the ways to reduce waste that produce economic value and creating an alternative fuel for diesel fuel substitute. Used cooking oil can be processed into biodiesel by transesterification with methanol using zeolite sulfated zirconia catalyst. Used cooking oil containing free fatty acids of 1,64% and a density of 0,911 g / ml Transesterification of Used cooking oil with sulfated zirconia zeolit catalyst was conducted in a batch reactor with maximum volume of 1000 mL equipped with a heater, thermometer, stirrer, and tap of the sample taker. Variables which were studied in this research include the ratio of methanol to oil (1:4, 1:6, 1:9, 1:12), reaction temperature (100OC, 110OC, 120OC ), and concentration of catalyst (0,5%, 1%, 2%). Condition process that was optimum was achieved at the ratio of oil to methanol 1:6, 2% catalyst concentration, reaction temperature of 120oC, and reaction time for 120 minutes with a conversion of 71.62%
ANALISA SIFAT FISIK BIODIESEL AMPAS KELAPA MELALUI PROSES MIKROEMULSI MENGGUNAKAN KATALIS BENTONIT
Penelitian ini bertujuan untuk menganalisis sifat fisik biodiesel yang dihasilkan dari
ampas kelapa melalui proses mikroemulsi dengan menggunakan katalis bentonit.
Biodiesel merupakan bahan bakar alternatif yang ramah lingkungan dan dapat
diperbaharui. Penggunaan ampas kelapa sebagai bahan baku bertujuan untuk
memanfaatkan limbah organik serta mengurangi pencemaran lingkungan. Proses
mikroemulsi dilakukan dengan mencampurkan minyak hasil ekstraksi ampas
kelapa, etanol, butanol, dan katalis bentonit dalam berbagai variasi berat (5–25
gram). Setelah melalui tahap catalytic cracking, sampel diuji terhadap sifat fisik
meliputi densitas, viskositas, dan flash point. Hasil penelitian menunjukkan bahwa
penambahan bentonit berpengaruh terhadap sifat fisik biodiesel, dengan nilai
optimum viskositas dan densitas berada pada penggunaan bentonit 10 gram, yaitu
masing-masing 2,67 cSt dan 890 kg/m³ yang sesuai dengan standar mutu biodiesel.
Namun, seluruh nilai flash point masih di bawah standar (130 °C), yang
mengindikasikan masih adanya senyawa volatil yang belum terserap sempurna.
Dengan demikian, penggunaan bentonit dalam proses mikroemulsi memiliki
potensi dalam meningkatkan kualitas biodiesel, namun diperlukan tahap pemurnian
lanjutan
Experimental Evaluation ofSMART Surfactant (UTP-SmartSurf) Derived From Natural Oil for EOR Application
In this report we will show the progressofthe project, understanding and some important
ideas that have been developed along the way for the past two months. Surfactants are very
important in providing strategies for Chemical Enhanced Oil Recovery (CEOR). The idea behind
this project is to modify the surfactant from inedible fatty acid of jatropha oil by epoxidation.
Surfactant can reduce the interfacial tension (IFT) ofwater from 72 mN/m to 0.001 mN/m. To do
so, the chemistry of surfactant is analyzed to understand way to modify the surfactant. Initial
selection of surfactants is based upon desirable surmctant structure. The characterization of the
surfactant will be study in few mannerswhichare IFT that comprised ofGC, HPLC, GC-MS and
spinning drop method.
This report will show the analysis of microemulsion testing and IFT measurement of
Natural Surfactant. The degree of improvement by using Natural Surfactant is compared with
few standard bench marks (oil-water IFT value, types ofcrude oil and commercial surfactants). It
is been evaluated quantatively and qualitatively throughout the experiment.
In this paper, IFT of Natural Surfactant is investigated in many ways and methods, and
some interesting conclusions are obtained, which will make an important effect on research of
SMART Surfactant (Natural Surfactant) theory. Besides, it also includes investigating the reason
of ultra-low interfacial tensions and providing suggestions on designing formulations for
practical application
Experimental Evaluation ofSMART Surfactant (UTP-SmartSurf) Derived From Natural Oil for EOR Application
In this report we will show the progressofthe project, understanding and some important
ideas that have been developed along the way for the past two months. Surfactants are very
important in providing strategies for Chemical Enhanced Oil Recovery (CEOR). The idea behind
this project is to modify the surfactant from inedible fatty acid of jatropha oil by epoxidation.
Surfactant can reduce the interfacial tension (IFT) ofwater from 72 mN/m to 0.001 mN/m. To do
so, the chemistry of surfactant is analyzed to understand way to modify the surfactant. Initial
selection of surfactants is based upon desirable surmctant structure. The characterization of the
surfactant will be study in few mannerswhichare IFT that comprised ofGC, HPLC, GC-MS and
spinning drop method.
This report will show the analysis of microemulsion testing and IFT measurement of
Natural Surfactant. The degree of improvement by using Natural Surfactant is compared with
few standard bench marks (oil-water IFT value, types ofcrude oil and commercial surfactants). It
is been evaluated quantatively and qualitatively throughout the experiment.
In this paper, IFT of Natural Surfactant is investigated in many ways and methods, and
some interesting conclusions are obtained, which will make an important effect on research of
SMART Surfactant (Natural Surfactant) theory. Besides, it also includes investigating the reason
of ultra-low interfacial tensions and providing suggestions on designing formulations for
practical application
Einsatz von Mikroemulsionen zur Behandlung schwermetallkontaminierter und organisch belasteter Böden
Das entwickelte Verfahrenskonzept stellt eine abfallarme Sanierungsmethode zur simultanen Behandlung schwermetallkontaminierter und organisch belasteter Böden dar. Die vom Boden abgetrennten Schadstoffe - Schwermetalle und Organika - werden in den entsprechenden Phasen der Mikroemulsion solubilisiert. Die entwickelte Formulierung der Mikroemulsion ist dadurch charakterisiert, insbesondere polare Schadstoffe respektive Schwermetalle aus kontaminierten Bodenmaterialien zu extrahieren. Der Einsatz der entwickelten bikontinuierlichen Mikroemulsion bewirkt bereits im ersten Extraktionsschritt die nahezu vollständige Entfernung sowohl der Schwermetalle als auch der organischen Schadstoffe. Durch eine mehrstufige Extraktion ist es möglich, auch hochkontaminierte Materialien einschließlich der Feinkornfraktionen zu reinigen und somit die Menge des zu deponierenden Bodenmaterials deutlich zu reduzieren
