129,635 research outputs found

    Biodegradable and compostable alternatives to conventional plastics

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.EPSR

    Hyperespectral images for the evaluation of the quality of minimally processed vegetables (spinach)

    Full text link
    The production of minimally processed vegetables and fruits is an emergent sector, however these processes reduce the useful life of the products. Main preservation techniques such cold storage and modified atmosphere are limited. New treatments are being applied (O3 , UV‐C radiation, biodegradable films…etc.). The sector precise of cheap and fast techniques to evaluate the general quality and the security of the processed products, that constitute a tool of aid to the decision in the implementation of new procedures of packaging and/or treatments. Objectives: To explore hyperspectral imaging for monitoring the evolution of minimally processed leafy vegetables during shelf‐life . To identify and classify deterioration rates of the leaves through Multivariate analysis techniques (PLS‐DA

    Wood polymer composites and their contribution to cascading utilisation

    Get PDF
    Due to a shortage of resources and a growing competition of land use, sustainable and efficient resource utilisation becomes increasingly important. The application and multiple, cascading utilisation of renewable resources is aimed at to ensure an allocation and future availability of resources. Wood polymer composites (WPCs) are a group of innovative materials consisting of mainly renewable resources. By means of summarizing recent research, it is shown how WPC can potentially contribute to an enhanced cascading utilisation. For the production of WPC, waste materials and by-products from wood and agricultural industry, e.g. offcuts, sawdust, residues from board manufacturing, pulping sludge, can serve as a raw material. Furthermore, the cited literature presents the use of recycled polymers and biopolymers as a potential alternative for the polymer component of WPC. By using biodegradable polymers, a fully biodegradable composite can be formed. In addition to using recycled materials and potentially being biodegradable, it is pointed out that WPC furthermore offers the possibility of being recycled itself, therefore being considered as a “green composite”. Although the influence of contaminated waste streams and mixed filler and polymer types on the properties of WPC made with such recyclates is yet not fully understood and no collection systems exist for post-consumer WPC, in-house recycling on the production sites is identified as a promising option as it reduces production costs and enhances resource efficiency and cascading utilisation. On the basis of cited life cycle assessments, the eco friendliness of WPC is assessed resulting in the conclusion that WPC cannot compete with solid wood with respect to environmental impact but is an environmentally friendly alternative to neat plastics in several applications

    Developing and applying an integrated modular design methodology within a SME

    Get PDF
    Modularity within a product can bring advantages to the design process by facilitating enhanced design reuse, reduced lead times, decreased cost and higher levels of quality. While the benefits of modularity are becoming increasingly better known, at present it is usually left to the designers themselves to introduce modularity into products. Studies into modularity have shown that byimplementing 'formal' methods, further benefits can be made in terms of time, cost, quality and performance. Current approaches that have been proposed for the formal development of modular design methodologies fail to accurately represent knowledge that is inherently produced during design projects and fail to consider design from the different viewpoints of the development process. This work, built on previous work on modularity and design for reuse, aims to develop an integrated design methodology that will optimise the modules created through the design process and allow for modularity to be 'built-in' to product development from the initial stages. The methodology andassociated tools have been developed to provide an easy-to-use approach to modularity that has support for design rationales and company knowledge that aid in effective design decision making. The methodology, named GeMoCURE, provides an integrated total solution to modular design based on reuse of proven physical and knowledge modules. Its incremental nature allows for the optimalstructure to be maintained as the design progresses. A special focus has been on the application of this approach for Small to Medium Enterprises (SMEs), which are typically challenged by a lack of design human resources and expertise

    Reducing environmental pollution caused by construction plant

    Get PDF
    Quantifiable data produced in a national report by the Environment Agency of England and Wales entitled ‘Water pollution incidents in England and Wales 1997’ and published by the Stationery Office in 1998, identifies that of over 3,723 substantiated pollution incidents across England and Wales in 1997. Within the generic sector classed as ‘Industry’ the construction industry was the most frequent polluter responsible for 22% of all substantiated water-related pollution incidents in that sector. The report also identified that a significant number (28%) of all substantiated pollution incidents across England and Wales are directly attributable to mineral-based fuels and oils many of which are used extensively within the construction industry. This paper seeks to locate the possible causes and effects for some of that oil-based pollution, discuss the issues and identifies a unique and radical Client-motivated solution within the UK to reduce and mitigate the undesirable impacts upon the environment. Evidence produced by the oil industry shows the enormous amount of one particularly aggressive pollutant –hydraulic oil, – which remains annually, unaccounted for. Hydraulic oil is used in most tracked earthmoving machinery; the sort of machinery most closely associated with construction work carried out near to watercourses. Biodegradable hydraulic oil is much more considerate to the environment, but is more expensive and not usually installed in new plant and machinery. The paper argues that on a life cycle basis the use of biodegradable oil is viable and feasible and that there are many external factors that make its usage desirable

    Lignocellulosic Recycled Materials to Design Molded Products: Optimization of Physical and Mechanical Properties

    Get PDF
    The object is to contribute to the reduction of environmental pollution, by reusing a fraction of urban solid waste, forestry and agroindustrial waste: newspaper (ONP), office paper (OWP), corrugated cardboard (OCC), pine sawdust, eucalyptus sawdust and sugar cane bagasse as raw material to design biocontainers suitable for growing plants, by applying pulp molding technology. The purpose is to evaluate the effects of the combination of these lignocellulosic materials on the physical-mechanical properties and optimize responses in order to select an ideal mixture on basis the product?s necessities. An experimental design of type mixture of extreme vertices was followed, considering secondary fibers as base material, in a 0-100% proportion, and pine sawdust, eucalyptus sawdust and bagasse fibers as reinforcement, in a 0-40% proportion. An experimental matrix by each reinforcing material was proposed. Properties were evaluated: density, tensile, bursting, tearing, compression, stiffness, wet tensile, permeability and water retention, testing handsheets weighing 150 g/m2. Responses were optimized using a statistical program. It was found that OWP pulps increase strength properties; OCC pulps increases tear and wet tensile; ONP pulps increase stiffness and reinforcement materials increase permeability. Factors that allow reaching the objectives are a mixture of pulp OWP/OCC in a 50/50 proportion.Fil: Aguerre, Yanina Susel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Gavazzo, Graciela Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of renewable PLA-starch composites

    Get PDF
    In order to avoid the use of compatibilizers or plasticizers, co-grinding was performed to produce PLA – starch composite materials. Fragmentation and agglomeration phenomena were analysed to propose a production mechanism. Co-grinding enhances dispersion of the filler in the matrix and interactions between the materials. Consequently while blending the two materials has a negative effect on mechanical properties, co-grinding permits to improve them if optimized operating conditions are applied. Water uptake and diffusion are also controlled by co-grinding conditions. This treatment allows the production of composite materials offering good use properties without any use of a compatibilizer or a plasticizer

    Open windrow composting of polymers: An investigation into the rate of degradation of polyethylene

    Get PDF
    The compostability of degradable polymers under open windrow composting conditions is explored within this paper. Areas for consideration were the use of, and impacts of, degradable polyethylene (PE) sacks on the composting process and the quality of the finished compost product. These factors were investigated through polymer weight loss over the composting process, the amount of polymer residue and chemical contaminants in the finished compost product, the windrow temperature profiles and a bioassay to establish plant growth and germination levels using the final compost product. This trial also included a comparative study of the weight loss under composting conditions of two different types of ‘degradable’ polymer sacks currently on the European market: PE and a starch based product. Statistical analysis of the windrow temperature profiles has led to the development of a model, which can help to predict the expected trends in the temperature profiles of open compost windrows where the organic waste is kerbside collected using a degradable PE sack
    corecore