39,145 research outputs found

    TFBSTools: an R/bioconductor package for transcription factor binding site analysis.

    Get PDF
    Summary: The ability to efficiently investigate transcription factor binding sites (TFBSs) genome-wide is central to computational studies of gene regulation. TFBSTools is an R/Bioconductor package for the analysis and manipulation of TFBSs and their associated transcription factor profile matrices. TFBStools provides a toolkit for handling TFBS profile matrices, scanning sequences and alignments including whole genomes, and querying the JASPAR database. The functionality of the package can be easily extended to include advanced statistical analysis, data visualization and data integration. Availability and implementation: The package is implemented in R and available under GPL-2 license from the Bioconductor website (http://bioconductor.org/packages/TFBSTools/). Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Bioconductor: open software development for computational biology and bioinformatics.

    Get PDF
    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples

    Bioconductor Case Studies

    Get PDF

    Reproducible probe-level analysis of the Affymetrix Exon 1.0 ST array with R/Bioconductor

    Full text link
    The presence of different transcripts of a gene across samples can be analysed by whole-transcriptome microarrays. Reproducing results from published microarray data represents a challenge due to the vast amounts of data and the large variety of pre-processing and filtering steps employed before the actual analysis is carried out. To guarantee a firm basis for methodological development where results with new methods are compared with previous results it is crucial to ensure that all analyses are completely reproducible for other researchers. We here give a detailed workflow on how to perform reproducible analysis of the GeneChip Human Exon 1.0 ST Array at probe and probeset level solely in R/Bioconductor, choosing packages based on their simplicity of use. To exemplify the use of the proposed workflow we analyse differential splicing and differential gene expression in a publicly available dataset using various statistical methods. We believe this study will provide other researchers with an easy way of accessing gene expression data at different annotation levels and with the sufficient details needed for developing their own tools for reproducible analysis of the GeneChip Human Exon 1.0 ST Array
    corecore