1,075,046 research outputs found
Bacterial Forensics: Revolutionizing Biochemical Analysis
Eva Childrey is a junior forensic science and chemistry double major working in Dr. Eh- rhardt’s research laboratory at VCU. The main goal of the research conducted in this laboratory is to explore the lipid profiles of different bacterial species
Serum Biochemical Phenotypes in the Domestic Dog
The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species
Probabilistic sensitivity analysis of biochemical reaction systems
Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical
Modelling the cAMP pathway using BioNessie, and the use of BVP techniques for solving ODEs (Poster Presentation)
Copyright @ 2007 Gu et al; licensee BioMed Central LtdBiochemists often conduct experiments in-vivo in order to explore observable behaviours and understand the dynamics of many intercellular and intracellular processes. However an intuitive understanding of their dynamics is hard to obtain because most pathways of interest involve components connected via interlocking loops. Formal methods for modelling and analysis of biochemical pathways are therefore indispensable. To this end, ODEs (ordinary differential equations) have been widely adopted as a method to model biochemical pathways because they have an unambiguous mathematical format and are amenable to rigorous quantitative analysis. BioNessie http://www.bionessie.com webcite is a workbench for the composition, simulation and analysis of biochemical networks which is being developed in by the Systems Biology team at the Bioinformatics Research Centre as a part of a large DTI funded project 'BPS: A Software Tool for the Simulation and Analysis of Biochemical Networks' http://www.brc.dcs.gla.ac.uk/projects/dti_beacon webcite. BioNessie is written in Java using NetBeans Platform libraries that makes it platform independent. The software employs specialised differential equations solvers for stiff and non-stiff systems to produce model simulation traces. BioNessie provides a user-friendly interfact that comes up with an intuitive tree-based graphical layout, an edition function to SBML-compatible models and feature of data output
Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer.
The major facilitator superfamily (MFS) effluxers are prominent mediators of antimicrobial resistance. The biochemical characterization of MFS proteins is hindered by their complex membrane environment that makes in vitro biochemical analysis challenging. Since the physicochemical properties of proteins drive the fitness of an organism, we posed the question of whether we could reverse that relationship and derive meaningful biochemical parameters for a single protein simply from fitness changes it confers under varying strengths of selection. Here, we present a physiological model that uses cellular fitness as a proxy to predict the biochemical properties of the MFS tetracycline efflux pump, TetB, and a family of single amino acid variants. We determined two lumped biochemical parameters roughly describing Km and Vmax for TetB and variants. Including in vivo protein levels into our model allowed for more specified prediction of pump parameters relating to substrate binding affinity and pumping efficiency for TetB and variants. We further demonstrated the general utility of our model by solely using fitness to assay a library of tet(B) variants and estimate their biochemical properties
Modelling and analysis of biochemical signalling pathway cross-talk
Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising) parallel composition of instances of generic modules (with internal and external labels). Pathways are then composed by (synchronising) parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways
- …
