3 research outputs found

    A Bamboo-inspired Exoskeleton (BiEXO) Based on Carbon Fiber for Shoulder and Elbow Joints

    Get PDF
    This paper presents a novel cable-driven exoskeleton (BiEXO) for the upper limb including shoulder and elbow joints. BiEXO is made of carbon fiber that is inspired by the Bamboo structure. The key components of BiEXO are carbon fiber tubes that mimic bamboo tubes. A combined driver is developed for BiEXO with two cable-driven mechanisms (CDMs) and a power transmission belt (PTB). The CDMs are used for shoulder and elbow flexion/extension movement utilizing cables to mimic the skeletal muscles function, while the PTB system drives a shoulder link to mimic the scapula joint for shoulder abduction/adduction movement. Simulation studies and evaluation experiments were performed to demonstrate the efficacy of the overall system. To determine the strength-to-weight of the bamboo-inspired links and guarantee high buckling strength in the face of loads imposed from the user side to the structure, finite element analysis (FEA) was performed. The results show that the carbon fiber link inspired by bamboo has more strength in comparison to the common long carbon fiber tube. The kinematic configuration was modeled by the modified Denavit-Hartenberg (D-H) notation. The mean absolute error (MAE) was 5.9 mm, and the root-mean-square error (RMSE) was 6 mm. In addition, verification experiments by tracking the trajectory in Cartesian space and the wear trials on a subject were carried out on the BiEXO prototype. The satisfactory results indicate BiEXO to be a promising system for rehabilitation or assistance in the future.</p

    A Bamboo-inspired Exoskeleton (BiEXO) Based on Carbon Fiber for Shoulder and Elbow Joints

    Get PDF
    This paper presents a novel cable-driven exoskeleton (BiEXO) for the upper limb including shoulder and elbow joints. BiEXO is made of carbon fiber that is inspired by the Bamboo structure. The key components of BiEXO are carbon fiber tubes that mimic bamboo tubes. A combined driver is developed for BiEXO with two cable-driven mechanisms (CDMs) and a power transmission belt (PTB). The CDMs are used for shoulder and elbow flexion/extension movement utilizing cables to mimic the skeletal muscles function, while the PTB system drives a shoulder link to mimic the scapula joint for shoulder abduction/adduction movement. Simulation studies and evaluation experiments were performed to demonstrate the efficacy of the overall system. To determine the strength-to-weight of the bamboo-inspired links and guarantee high buckling strength in the face of loads imposed from the user side to the structure, finite element analysis (FEA) was performed. The results show that the carbon fiber link inspired by bamboo has more strength in comparison to the common long carbon fiber tube. The kinematic configuration was modeled by the modified Denavit-Hartenberg (D-H) notation. The mean absolute error (MAE) was 5.9 mm, and the root-mean-square error (RMSE) was 6 mm. In addition, verification experiments by tracking the trajectory in Cartesian space and the wear trials on a subject were carried out on the BiEXO prototype. The satisfactory results indicate BiEXO to be a promising system for rehabilitation or assistance in the future.</p

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users
    corecore