2,397 research outputs found

    Bioinspired engineering of exploration systems for NASA and DoD

    Get PDF
    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers

    Image-based Skin Disease Detection and Classification through Bioinspired Machine Learning Approaches

    Get PDF
    A self-learning disease detection model will be useful for identifying skin infections in suspected individuals using skin images of infected patients. To detect skin diseases, some AI-based bioinspired models employ skin images. Skin infection is a common problem that is currently faced due to various reasons, such as food, water, environmental factors, and many others. Skin infections such as psoriasis, skin cancer, monkeypox, and tomato flu, among others, have a lower death rate but a significant impact on quality of life. Neural Networks (NNs) and Swarm intelligence (SI) based approaches are employed for skin disease diagnosis and classification through image processing. In this paper, the convolutional neural networks-based Cuckoo search algorithm (CNN-CS) is trained using the well-known multi-objective optimization technique cuckoo search. The performance of the suggested CNN-CS model is evaluated by comparing it with three commonly used metaheuristic-based classifiers: CNN-GA, CNN-BAT, and CNN-PSO. This comparison was based on various measures, including accuracy, precision, recall, and F1-score. These measures are calculated using the confusion matrices from the testing phase. The results of the experiments revealed that the proposed model has outperformed the others, achieving an accuracy of 97.72%

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    A review of UAV autonomous navigation in GPS-denied environments

    Get PDF
    Unmanned aerial vehicles (UAVs) have drawn increased research interest in recent years, leading to a vast number of applications, such as, terrain exploration, disaster assistance and industrial inspection. Unlike UAV navigation in outdoor environments that rely on GPS (Global Positioning System) for localization, indoor navigation cannot rely on GPS due to the poor quality or lack of signal. Although some reviewing papers particularly summarized indoor navigation strategies (e.g., Visual-based Navigation) or their specific sub-components (e.g., localization and path planning) in detail, there still lacks a comprehensive survey for the complete navigation strategies that cover different technologies. This paper proposes a taxonomy which firstly classifies the navigation strategies into Mapless and Map-based ones based on map usage and then, respectively categorizes the Mapless navigation into Integrated, Direct and Indirect approaches via common characteristics. The Map-based navigation is then split into Known Map/Spaces and Map-building via prior knowledge. In order to analyze these navigation strategies, this paper uses three evaluation metrics (Path Length, Deviation Rate and Exploration Efficiency) according to the common purposes of navigation to show how well they can perform. Furthermore, three representative strategies were selected and 120 flying experiments conducted in two reality-like simulated indoor environments to show their performances against the evaluation metrics proposed in this paper, i.e., the ratio of Successful Flight, the Mean time of Successful Flight, the Mean Length of Successful Flight, the Mean time of Flight, and the Mean Length of Flight. In comparison to the CNN-based Supervised Learning (directly maps visual observations to UAV controls) and the Frontier-based navigation (necessitates continuous global map generation), the experiments show that the CNN-based Distance Estimation for navigation trades off the ratio of Successful Flight and the required time and path length. Moreover, this paper identifies the current challenges and opportunities which will drive UAV navigation research in GPS-denied environments

    Chaser Priori Wolf (CPW) Optimization an Improved Optimization Technique Video Content Classification and Detection

    Get PDF
    Optimizers play a crucial role in video object detection by promoting the training and improving the performance of the model. Optimizers are responsible for minimizing the loss function during training. The parameters of models are updated iteratively based on the gradients of the loss parameters. By continuously adjusting the parameters in the direction of the steepest descent, optimizers guide the model towards convergence, reducing the loss and improving the object detection performance. In the proposed paper hybrid optimizer named chaser priori wolf optimizer is proposed. The chaser priori wolf optimization is based on the hybridization of cat swarm optimization and coyote optimization. Well-known optimizers like SGD, ADAM, adagrad, adadelta and RMSprop are used as default optimizers by researchers. The proposed work introduced CPW optimizer which works for classification to improve the convergence and feature selection. The comparative result showed an increase in the performance of CNN based YOLO model. The results are compared concerning sensitivity, specificity and accuracy. Results clearly showed improvement in all performance metrics and the average improvement in comparison with state of art architecture is 10.3%

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    • …
    corecore