100,470 research outputs found

    Fibonacci Binning

    Full text link
    This note argues that when dot-plotting distributions typically found in papers about web and social networks (degree distributions, component-size distributions, etc.), and more generally distributions that have high variability in their tail, an exponentially binned version should always be plotted, too, and suggests Fibonacci binning as a visually appealing, easy-to-use and practical choice

    Adaptive Binning of X-ray data with Weighted Voronoi Tesselations

    Full text link
    We present a technique to adaptively bin sparse X-ray data using weighted Voronoi tesselations (WVTs). WVT binning is a generalisation of Cappellari & Copin's (2001) Voronoi binning algorithm, developed for integral field spectroscopy. WVT binning is applicable to many types of data and creates unbiased binning structures with compact bins that do not lead the eye. We apply the algorithm to simulated data, as well as several X-ray data sets, to create adaptively binned intensity images, hardness ratio maps and temperature maps with constant signal-to-noise ratio per bin. We also illustrate the separation of diffuse gas emission from contributions of unresolved point sources in elliptical galaxies. We compare the performance of WVT binning with other adaptive binning and adaptive smoothing techniques. We find that the CIAO tool csmooth creates serious artefacts and advise against its use to interpret diffuse X-ray emission.Comment: 14 pages; submitted to MNRAS; code freely available at http://www.phy.ohiou.edu/~diehl/WVT/index.html with user manual, examples and high-resolution version of this pape

    Sensor Adaptation and Development in Robots by Entropy Maximization of Sensory Data

    Get PDF
    A method is presented for adapting the sensors of a robot to the statistical structure of its current environment. This enables the robot to compress incoming sensory information and to find informational relationships between sensors. The method is applied to creating sensoritopic maps of the informational relationships of the sensors of a developing robot, where the informational distance between sensors is computed using information theory and adaptive binning. The adaptive binning method constantly estimates the probability distribution of the latest inputs to maximize the entropy in each individual sensor, while conserving the correlations between different sensors. Results from simulations and robotic experiments with visual sensors show how adaptive binning of the sensory data helps the system to discover structure not found by ordinary binning. This enables the developing perceptual system of the robot to be more adapted to the particular embodiment of the robot and the environment

    Maximal Violation of Bell Inequalities using Continuous Variables Measurements

    Get PDF
    We propose a whole family of physical states that yield a violation of the Bell CHSH inequality arbitrarily close to its maximum value, when using quadrature phase homodyne detection. This result is based on a new binning process called root binning, that is used to transform the continuous variables measurements into binary results needed for the tests of quantum mechanics versus local realistic theories. A physical process in order to produce such states is also suggested. The use of high-efficiency spacelike separated homodyne detections with these states and this binning process would result in a conclusive loophole-free test of quantum mechanics.Comment: 7 pages, 5 figures, to appear in PRA in a slightly different versio

    Analysis of binning of normals for spherical harmonic cross-correlation

    Get PDF
    Spherical harmonic cross-correlation is a robust registration technique that uses the normals of two overlapping point clouds to bring them into coarse rotational alignment. This registration technique however has a high computational cost as spherical harmonics need to be calculated for every normal. By binning the normals, the computational efficiency is improved as the spherical harmonics can be pre-computed and cached at each bin location. In this paper we evaluate the efficiency and accuracy of the equiangle grid, icosahedron subdivision and the Fibonacci spiral, an approach we propose. It is found that the equiangle grid has the best efficiency as it can perform direct binning, followed by the Fibonacci spiral and then the icosahedron, all of which decrease the computational cost compared to no binning. The Fibonacci spiral produces the highest achieved accuracy of the three approaches while maintaining a low number of bins. The number of bins allowed by the equiangle grid and icosahedron are much more restrictive than the Fibonacci spiral. The performed analysis shows that the Fibonacci spiral can perform as well as the original cross-correlation algorithm without binning, while also providing a significant improvement in computational efficiency

    Analysis and optimization of weighted ensemble sampling

    Get PDF
    We give a mathematical framework for weighted ensemble (WE) sampling, a binning and resampling technique for efficiently computing probabilities in molecular dynamics. We prove that WE sampling is unbiased in a very general setting that includes adaptive binning. We show that when WE is used for stationary calculations in tandem with a coarse model, the coarse model can be used to optimize the allocation of replicas in the bins.Comment: 22 pages, 3 figure
    corecore