1,806,701 research outputs found
Hardt's surprising sloppy readings : a flat binding account
The paper presents an additional argument for a specific account of semantic binding: the flat-binding analysis. The argument is based on observations concerning sloppy interpretations in verb phrase ellipsis when the binder is not the subject of the elided VP. In one such case, it is important that one of the binders belong to the domain of the other. This case can be derived from the flat-binding analysis as is shown in the paper, while it is unclear how to account for it within other analyses of semantic binding
Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis
The aryl hydrocarbon receptor (AhR) is a ligand-dependent, basic helix-loop-helix Per-Arnt-Sim (PAS)-containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our previous three-dimensional homology model of the mouse AhR (mAhR) PAS B ligand binding domain allowed identification of the binding site and its experimental validation. We have extended this analysis by conducting comparative structural modeling studies of the ligand binding domains of six additional highaffinity mammalian AhRs. These results, coupled with site-directed mutagenesis and AhR functional analysis, have allowed detection of the "TCDD binding-fingerprint" of conserved residues within the ligand binding cavity necessary for high-affinity TCDD binding and TCDD-dependent AhR transformation DNA binding. The essential role of selected residues was further evaluated using molecular docking simulations of TCDD with both wild-type and mutant mAhRs. Taken together, our results dramatically improve our understanding of the molecular determinants of TCDD binding and provide a basis for future studies directed toward rationalizing the observed species differences in AhR sensitivity to TCDD and understanding the mechanistic basis for the dramatic diversity in AhR ligand structure. © 2009 American Chemical Society
CFTR Gating II: Effects of Nucleotide Binding on the Stability of Open States
Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of ΔR/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. ΔR/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of ∼100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for ΔR/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH(2)-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation
New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element
Four new members of the ERF (ethylene-response factor) family of plant-speci¢c DNA-binding (GCC box) factors were isolated from tomato fruit (LeERF1^4). Phylogenetic analysis indicated that LeERF2 belongs to a new ERF class, characterized by a conserved N-terminal signature sequence. Expression patterns and cis/trans binding a⁄nities di¡ered between the LeERFs. Combining experimental data and modeled three-dimensional analysis, it was shown that binding a⁄nity of the LeERFs was a¡ected by both the variation of nucleotides surrounding the DNA cis-element sequence and the nature of critical amino acid residues within the ERF domain
Recommended from our members
Titanocene anticancer complexes and their binding mode of action to human serum albumin: a computational study
Due to the pivotal role played by human serum albumin (HSA) in the transport and cytotoxicity of titanocene complexes, a docking study has been performed on a selected set of titanocene complexes to aid in the current understanding of the potential mode of action of these titanocenes upon binding HSA. Analysis of the docking results has revealed potential binding at the known drug binding sites in HSA and has provided some explanation for the specificity and subsequent cytotoxicity of these titanocenes. Additionally, a new alternative binding site for these titanocenes has been postulated
The use of chitin binding proteins for glycoprotein analysis
The focus of the pharmaceutical industry has dramatically shifted in the past number of years. Traditional drugs were synthesised using chemical reactions have been replaced by recombinant glycoprotein molecules. These potential recombinant glycoprotein therapeutics display oligosaccharide structures on their surfaces that are recognised by their target host. The specific glycan moieties on the surface of the molecules vary dramatically and have a large impact on the efficacy of the drug. The development of bioanalytical tools to identify and separate the species of glyco-forms present in a preparation of the glycoprotein therapeutic will significantly help to advance the quality and effectiveness of recombinant glycoprotein molecules. Traditionally lectins, isolated from plants, had been used to profile sugar species displayed on glycoproteins. I have explored the use of prokaryotic chitin binding proteins (CBPs) to investigate structures on glycoproteins
Protein-RNA interactions: a structural analysis
A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level
Glycolytic enzymes - novel carbohydrate binding proteins for glycoprotein analysis
•The cloning, expression, purification and characterisation of recombinant prokaryotic glycolytic enzymes
•The mutagenesis of prokaryotic glycolytic enzymes to generate novel recombinant carbohydrate binding proteins
•The characterisation of the binding profile of the novel recombinant carbohydrate binding protein
- …