69,907 research outputs found

    Efficient Principally Stratified Treatment Effect Estimation in Crossover Studies with Absorbent Binary Endpoints

    Get PDF
    Suppose one wishes to estimate the effect of a binary treatment on a binary endpoint conditional on a post-randomization quantity in a counterfactual world in which all subjects received treatment. It is generally difficult to identify this parameter without strong, untestable assumptions. It has been shown that identifiability assumptions become much weaker under a crossover design in which subjects not receiving treatment are later given treatment. Under the assumption that the post-treatment biomarker observed in these crossover subjects is the same as would have been observed had they received treatment at the start of the study, one can identify the treatment effect with only mild additional assumptions. This remains true if the endpoint is absorbent, i.e. an endpoint such as death or HIV infection such that the post-crossover treatment biomarker is not meaningful if the endpoint has already occurred. In this work, we review identifiability results for a parameter of the distribution of the data observed under a crossover design with the principally stratified treatment effect of interest. We describe situations in which these assumptions would be falsifiable, and show that these assumptions are not otherwise falsifiable. We then provide a targeted minimum loss-based estimator for the setting that makes no assumptions on the distribution that generated the data. When the semiparametric efficiency bound is well defined, for which the primary condition is that the biomarker is discrete-valued, this estimator is efficient among all regular and asymptotically linear estimators. We also present a version of this estimator for situations in which the biomarker is continuous. Implications to closeout designs for vaccine trials are discussed

    A Note on Flips in Diagonal Rectangulations

    Get PDF
    Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations and other families of geometric partitions. In this note, we consider a family of flip operations on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter permutations, avoiding the vincular patterns { 3{14}2, 2{41}3 }. This complements results from Law and Reading (JCTA, 2012) and provides a complete characterization of flip operations on diagonal rectangulations, in both geometric and combinatorial terms

    Spectral Signatures of KiloHertz Quasi-Periodic Oscillations from Accreting Neutron Stars

    Get PDF
    Correlations discovered between millisecond timing properties and spectral properties in neutron star x-ray binaries are described and then interpreted in relation to accretion flows in the systems. Use of joint timing and spectral observations to test for the existence of the marginally stable orbit, a key prediction of strong field general relativity, is described and observations of the neutron star x-ray binary 4U1820-303 which suggest that the signature of the marginally stable orbit has been detected are presented.Comment: 10 pages, Invited talk to appear in the Proceedings of the Conference X-ray Astronomy '999: Stellar Endpoints, AGNs and the Diffuse X-ray Backgroun

    Fully Dynamic Connectivity in O(logn(loglogn)2)O(\log n(\log\log n)^2) Amortized Expected Time

    Get PDF
    Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with O(logn(loglogn)2)O(\log n(\log\log n)^2) amortized expected update time and O(logn/logloglogn)O(\log n/\log\log\log n) worst case query time, which comes very close to the cell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup (2011)

    Fast Computation of Small Cuts via Cycle Space Sampling

    Full text link
    We describe a new sampling-based method to determine cuts in an undirected graph. For a graph (V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove that with high probability, sampling the cycle space identifies the cuts of a graph. This leads to simple new linear-time sequential algorithms for finding all cut edges and cut pairs (a set of 2 edges that form a cut) of a graph. In the model of distributed computing in a graph G=(V, E) with O(log V)-bit messages, our approach yields faster algorithms for several problems. The diameter of G is denoted by Diam, and the maximum degree by Delta. We obtain simple O(Diam)-time distributed algorithms to find all cut edges, 2-edge-connected components, and cut pairs, matching or improving upon previous time bounds. Under natural conditions these new algorithms are universally optimal --- i.e. a Omega(Diam)-time lower bound holds on every graph. We obtain a O(Diam+Delta/log V)-time distributed algorithm for finding cut vertices; this is faster than the best previous algorithm when Delta, Diam = O(sqrt(V)). A simple extension of our work yields the first distributed algorithm with sub-linear time for 3-edge-connected components. The basic distributed algorithms are Monte Carlo, but they can be made Las Vegas without increasing the asymptotic complexity. In the model of parallel computing on the EREW PRAM our approach yields a simple algorithm with optimal time complexity O(log V) for finding cut pairs and 3-edge-connected components.Comment: Previous version appeared in Proc. 35th ICALP, pages 145--160, 200
    corecore