434,823 research outputs found
Monte Carlo Particle Lists: MCPL
A binary format with lists of particle state information, for interchanging
particles between various Monte Carlo simulation applications, is presented.
Portable C code for file manipulation is made available to the scientific
community, along with converters and plugins for several popular simulation
packages
EUREGIO MRSA-net Twente/Munsterland - a Dutch-German cross-border network for the prevention and control of infections caused by methicillin-resistant Staphylococcus aureus
Binary file ES_Abstracts_Final_ECDC.txt matches
</jats:p
Fortran Program for X-Ray Photoelectron Spectroscopy Data Reformatting
A FORTRAN program has been written for use on an IBM PC/XT or AT or compatible microcomputer (personal computer, PC) that converts a column of ASCII-format numbers into a binary-format file suitable for interactive analysis on a Digital Equipment Corporation (DEC) computer running the VGS-5000 Enhanced Data Processing (EDP) software package. The incompatible floating-point number representations of the two computers were compared, and a subroutine was created to correctly store floating-point numbers on the IBM PC, which can be directly read by the DEC computer. Any file transfer protocol having provision for binary data can be used to transmit the resulting file from the PC to the DEC machine. The data file header required by the EDP programs for an x ray photoelectron spectrum is also written to the file. The user is prompted for the relevant experimental parameters, which are then properly coded into the format used internally by all of the VGS-5000 series EDP packages
Critical Behavior of the Random Potts Chain
We study the critical behavior of the random q-state Potts quantum chain by
density matrix renormalization techniques. Critical exponents are calculated by
scaling analysis of finite lattice data of short chains () averaging
over all possible realizations of disorder configurations chosen according to a
binary distribution. Our numerical results show that the critical properties of
the model are independent of q in agreement with a renormalization group
analysis of Senthil and Majumdar (Phys. Rev. Lett.{\bf 76}, 3001 (1996)). We
show how an accurate analysis of moments of the distribution of magnetizations
allows a precise determination of critical exponents, circumventing some
problems related to binary disorder. Multiscaling properties of the model and
dynamical correlation functions are also investigated.Comment: LaTeX2e file with Revtex, 9 pages, 8 eps figures, 4 tables; typos
correcte
Study of the Fusion-Fission Process in the Reaction
Fusion-fission and fully energy-damped binary processes of the
Cl+Mg reaction were investigated using particle-particle
coincidence techniques at a Cl bombarding energy of E
8 MeV/nucleon. Inclusive data were also taken in order to determine the partial
wave distribution of the fusion process. The fragment-fragment correlation data
show that the majority of events arises from a binary-decay process with a
relatively large multiplicity of secondary light-charged particles emitted by
the two primary excited fragments in the exit channel. No evidence is observed
for ternary-breakup processes, as expected from the systematics recently
established for incident energies below 15 MeV/nucleon and for a large number
of reactions. The binary-process results are compared with predictions of
statistical-model calculations. The calculations were performed using the
Extended Hauser-Feshbach method, based on the available phase space at the
scission point of the compound nucleus. This new method uses
temperature-dependent level densities and its predictions are in good agreement
with the presented experimental data, thus consistent with the fusion-fission
origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the
European Physical Journal A - Hadrons and Nucle
- …
