2,177,434 research outputs found
Binary to binary-coded-decimal converter Patent
Binary to binary-coded decimal converter using single set of logic circuits notwithstanding number of shift register decade
Binary to binary coded decimal converter
A binary coded input signal is converted to a binary coded decimal signal having N decades by employing N four bit shift registers. The bits of the input signal are sequentially supplied, in order, to the least significant position of the register for the units decade, with the most significant bit of the input signal being applied to the units register first. Each of the registers includes a right shift-parallel load mode control input terminal. In response to the sum of the values stored in each register and the binary value 0011 being less than the binary value 1000, the mode control input terminal is activated to shift the register contents one bit to the right. In response to the sum being greater than 1000, the mode control input terminal is activated to load the sum into the register
Microlensing Detections of Planets in Binary Stellar Systems
We demonstrate that microlensing can be used for detecting planets in binary
stellar systems. This is possible because in the geometry of planetary binary
systems where the planet orbits one of the binary component and the other
binary star is located at a large distance, both planet and secondary companion
produce perturbations at a common region around the planet-hosting binary star
and thus the signatures of both planet and binary companion can be detected in
the light curves of high-magnification lensing events. We find that identifying
planets in binary systems is optimized when the secondary is located in a
certain range which depends on the type of the planet. The proposed method can
detect planets with masses down to one tenth of the Jupiter mass in binaries
with separations <~ 100 AU. These ranges of planet mass and binary separation
are not covered by other methods and thus microlensing would be able to make
the planetary binary sample richer.Comment: 5 pages, two figures in JPG forma
Fast rotating stars resulting from binary evolution will often appear to be single
Rapidly rotating stars are readily produced in binary systems. An accreting
star in a binary system can be spun up by mass accretion and quickly approach
the break-up limit. Mergers between two stars in a binary are expected to
result in massive, fast rotating stars. These rapid rotators may appear as Be
or Oe stars or at low metallicity they may be progenitors of long gamma-ray
bursts.
Given the high frequency of massive stars in close binaries it seems likely
that a large fraction of rapidly rotating stars result from binary interaction.
It is not straightforward to distinguish a a fast rotator that was born as a
rapidly rotating single star from a fast rotator that resulted from some kind
of binary interaction. Rapidly rotating stars resulting from binary interaction
will often appear to be single because the companion tends to be a low mass,
low luminosity star in a wide orbit. Alternatively, they became single stars
after a merger or disruption of the binary system during the supernova
explosion of the primary.
The absence of evidence for a companion does not guarantee that the system
did not experience binary interaction in the past. If binary interaction is one
of the main causes of high stellar rotation rates, the binary fraction is
expected to be smaller among fast rotators. How this prediction depend on
uncertainties in the physics of the binary interactions requires further
investigation.Comment: 2 pages, 1 figure, to be published in the proceedings of IAU 272
"Active OB stars: structure, evolution, mass loss and critical limit", Paris
19-23 July 201
Long-Term Stability of Planets in Binary Systems
A simple question of celestial mechanics is investigated: in what regions of
phase space near a binary system can planets persist for long times? The
planets are taken to be test particles moving in the field of an eccentric
binary system. A range of values of the binary eccentricity and mass ratio is
studied, and both the case of planets orbiting close to one of the stars, and
that of planets outside the binary orbiting the system's center of mass, are
examined. From the results, empirical expressions are developed for both 1) the
largest orbit around each of the stars, and 2) the smallest orbit around the
binary system as a whole, in which test particles survive the length of the
integration (10^4 binary periods). The empirical expressions developed, which
are roughly linear in both the mass ratio mu and the binary eccentricity e, are
determined for the range 0.0 <= e <= 0.7-0.8 and 0.1 <= mu <= 0.9 in both
regions, and can be used to guide searches for planets in binary systems. After
considering the case of a single low-mass planet in binary systems, the
stability of a mutually-interacting system of planets orbiting one star of a
binary system is examined, though in less detail.Comment: 19 pages, 5 figures, 7 tables, accepted by the Astronomical Journa
Evolution of the Binary Fraction in Dense Stellar Systems
Using our recently improved Monte Carlo evolution code, we study the
evolution of the binary fraction in globular clusters. In agreement with
previous N-body simulations, we find generally that the hard binary fraction in
the core tends to increase with time over a range of initial cluster central
densities for initial binary fractions <~ 90%. The dominant processes driving
the evolution of the core binary fraction are mass segregation of binaries into
the cluster core and preferential destruction of binaries there. On a global
scale, these effects and the preferential tidal stripping of single stars tend
to roughly balance, leading to overall cluster binary fractions that are
roughly constant with time. Our findings suggest that the current hard binary
fraction near the half-mass radius is a good indicator of the hard primordial
binary fraction. However, the relationship between the true binary fraction and
the fraction of main-sequence stars in binaries (which is typically what
observers measure) is non-linear and rather complicated. We also consider the
importance of soft binaries, which not only modify the evolution of the binary
fraction, but can drastically change the evolution of the cluster as a whole.
Finally, we describe in some detail the recent addition of single and binary
stellar evolution to our cluster evolution code.Comment: 8 pages, 7 figures in emulateapj format. Submitted to Ap
- …
