80 research outputs found

    Adaptive Active Anti-vibration Control for a Three-dimensional Helicopter Flexible Slung-load System with Input Saturations and Backlash

    Get PDF
    This study investigates active anti-vibration control for a three-dimensional helicopter flexible slung-load system (HFSLS) subject to input saturations and backlash. The first target of the study is to establish a model for a three-dimensional HFSLS. The second target is to develop an adaptive control law for a HFSLS by analyzing its ability to compensate for the effects of input saturations, input backlash, and external disturbances, while achieving the goal of vibration reduction. Simulation results of the numerical show that the proposed adaptive active control technology is effective in solving the oscillation suppression problem for the three-dimensional HFSLS with input saturations and backlash.</p

    Robust neurooptimal control for a robot via adaptive dynamic programming

    Get PDF
    We aim at the optimization of the tracking control of a robot to improve the robustness, under the effect of unknown nonlinear perturbations. First, an auxiliary system is introduced, and optimal control of the auxiliary system can be seen as an approximate optimal control of the robot. Then, neural networks (NNs) are employed to approximate the solution of the Hamilton-Jacobi-Isaacs equation under the frame of adaptive dynamic programming. Next, based on the standard gradient attenuation algorithm and adaptive critic design, NNs are trained depending on the designed updating law with relaxing the requirement of initial stabilizing control. In light of the Lyapunov stability theory, all the error signals can be proved to be uniformly ultimately bounded. A series of simulation studies are carried out to show the effectiveness of the proposed control

    Boundary vibration control of a floating wind turbine system with mooring lines

    Get PDF
    In this paper, we investigate dynamic modeling, active boundary control design, and stability analysis for a coupled floating wind turbine (FWT) system, which is connected with two flexible mooring lines. It is a coupled beam-strings structure, and we design two boundary controllers to restrain the vibrations of this flexible system caused by external disturbances based on the coupled partial differential equations and ordinary differential equations (PDEs–ODEs) model. Meanwhile, significant performance of designed boundary controllers and system’s stability are theoretically analyzed, and a set of simulation results are provided to show efficacy of the proposed approach

    Admittance-based controller design for physical human-robot interaction in the constrained task space

    Get PDF
    In this article, an admittance-based controller for physical human-robot interaction (pHRI) is presented to perform the coordinated operation in the constrained task space. An admittance model and a soft saturation function are employed to generate a differentiable reference trajectory to ensure that the end-effector motion of the manipulator complies with the human operation and avoids collision with surroundings. Then, an adaptive neural network (NN) controller involving integral barrier Lyapunov function (IBLF) is designed to deal with tracking issues. Meanwhile, the controller can guarantee the end-effector of the manipulator limited in the constrained task space. A learning method based on the radial basis function NN (RBFNN) is involved in controller design to compensate for the dynamic uncertainties and improve tracking performance. The IBLF method is provided to prevent violations of the constrained task space. We prove that all states of the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB) by utilizing the Lyapunov stability principles. At last, the effectiveness of the proposed algorithm is verified on a Baxter robot experiment platform. Note to Practitioners-This work is motivated by the neglect of safety in existing controller design in physical human-robot interaction (pHRI), which exists in industry and services, such as assembly and medical care. It is considerably required in the controller design for rigorously handling constraints. Therefore, in this article, we propose a novel admittance-based human-robot interaction controller. The developed controller has the following functionalities: 1) ensuring reference trajectory remaining in the constrained task space: A differentiable reference trajectory is shaped by the desired admittance model and a soft saturation function; 2) solving uncertainties of robotic dynamics: A learning approach based on radial basis function neural network (RBFNN) is involved in controller design; and 3) ensuring the end-effector of the manipulator remaining in the constrained task space: different from other barrier Lyapunov function (BLF), integral BLF (IBLF) is proposed to constrain system output directly rather than tracking error, which may be more convenient for controller designers. The controller can be potentially applied in many areas. First, it can be used in the rehabilitation robot to avoid injuring the patient by limiting the motion. Second, it can ensure the end-effector of the industrial manipulator in a prescribed task region. In some industrial tasks, dangerous or damageable tools are mounted on the end-effector, and it will hurt humans and bring damage to the robot when the end-effector is out of the prescribed task region. Third, it may bring a new idea to the designed controller for avoiding collisions in pHRI when collisions occur in the prescribed trajectory of end-effector

    Reinforcement learning control of a flexible two-link manipulator: an experimental investigation

    Get PDF
    This article discusses the control design and experiment validation of a flexible two-link manipulator (FTLM) system represented by ordinary differential equations (ODEs). A reinforcement learning (RL) control strategy is developed that is based on actor-critic structure to enable vibration suppression while retaining trajectory tracking. Subsequently, the closed-loop system with the proposed RL control algorithm is proved to be semi-global uniform ultimate bounded (SGUUB) by Lyapunov's direct method. In the simulations, the control approach presented has been tested on the discretized ODE dynamic model and the analytical claims have been justified under the existence of uncertainty. Eventually, a series of experiments in a Quanser laboratory platform are investigated to demonstrate the effectiveness of the presented control and its application effect is compared with PD control

    Human-robot co-carrying using visual and force sensing

    Get PDF
    In this paper, we propose a hybrid framework using visual and force sensing for human-robot co-carrying tasks. Visual sensing is utilized to obtain human motion and an observer is designed for estimating control input of human, which generates robot's desired motion towards human's intended motion. An adaptive impedance-based control strategy is proposed for trajectory tracking with neural networks (NNs) used to compensate for uncertainties in robot's dynamics. Motion synchronization is achieved and this approach yields a stable and efficient interaction behavior between human and robot, decreases human control effort and avoids interference to human during the interaction. The proposed framework is validated by a co-carrying task in simulations and experiments

    A cumulative index to a continuing bibliography on aeronautical engineering

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes

    Aeronautical engineering: A continuing bibliography with indexes (supplement 268)

    Get PDF
    This bibliography lists 406 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems
    corecore