3 research outputs found

    Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery

    Get PDF
    Image-guided neurosurgery involves the display of MRI-based preoperative plans in an intraoperative reference frame. Interventional MRI (iMRI) can serve as a reference for non-rigid registration based propagation of preoperative MRI. Structural MRI images exhibit spatially varying intensity relationships, which can be captured by a local similarity measure such as the local normalized correlation coefficient (LNCC). However, LNCC weights local neighborhoods using a static spatial kernel and includes voxels from beyond a tissue or resection boundary in a neighborhood centered inside the boundary. We modify LNCC to use locally adaptive weighting inspired by bilateral filtering and evaluate it extensively in a numerical phantom study, a clinical iMRI study and a segmentation propagation study. The modified measure enables increased registration accuracy near tissue and resection boundaries

    Bilateral weighted adaptive local similarity measure for registration in neurosurgery

    Get PDF
    Image-guided neurosurgery involves the display of MRI-based preoperative plans in an intraoperative reference frame. Interventional MRI (iMRI) can serve as a reference for non-rigid registration based propagation of preoperative MRI. Structural MRI images exhibit spatially varying intensity relationships, which can be captured by a local similarity measure such as the local normalized correlation coefficient (LNCC). However, LNCC weights local neighborhoods using a static spatial kernel and includes voxels from beyond a tissue or resection boundary in a neighborhood centered inside the boundary. We modify LNCC to use locally adaptive weighting inspired by bilateral filtering and evaluate it extensively in a numerical phantom study, a clinical iMRI study and a segmentation propagation study. The modified measure enables increased registration accuracy near tissue and resection boundaries

    Enhancing Registration for Image-Guided Neurosurgery

    Get PDF
    Pharmacologically refractive temporal lobe epilepsy and malignant glioma brain tumours are examples of pathologies that are clinically managed through neurosurgical intervention. The aims of neurosurgery are, where possible, to perform a resection of the surgical target while minimising morbidity to critical structures in the vicinity of the resected brain area. Image-guidance technology aims to assist this task by displaying a model of brain anatomy to the surgical team, which may include an overlay of surgical planning information derived from preoperative scanning such as the segmented resection target and nearby critical brain structures. Accurate neuronavigation is hindered by brain shift, the complex and non-rigid deformation of the brain that arises during surgery, which invalidates assumed rigid geometric correspondence between the neuronavigation model and the true shifted positions of relevant brain areas. Imaging using an interventional MRI (iMRI) scanner in a next-generation operating room can serve as a reference for intraoperative updates of the neuronavigation. An established clinical image processing workflow for iMRI-based guidance involves the correction of relevant imaging artefacts and the estimation of deformation due to brain shift based on non-rigid registration. The present thesis introduces two refinements aimed at enhancing the accuracy and reliability of iMRI-based guidance. A method is presented for the correction of magnetic susceptibility artefacts, which affect diffusion and functional MRI datasets, based on simulating magnetic field variation in the head from structural iMRI scans. Next, a method is presented for estimating brain shift using discrete non-rigid registration and a novel local similarity measure equipped with an edge-preserving property which is shown to improve the accuracy of the estimated deformation in the vicinity of the resected area for a number of cases of surgery performed for the management of temporal lobe epilepsy and glioma
    corecore