102 research outputs found

    A sensorless virtual slave control scheme for kinematically dissimilar master-slave teleoperation

    Get PDF
    The use of telerobotic systems is essential for remote handling (RH) operations in radioactive areas of scientific facilities that generate high doses of radiation. Recent developments in remote handling technology has seen a great deal of effort being directed towards the design of modular remote handling control rooms equipped with a standard master arm which will be used to separately control a range of different slave devices. This application thus requires a kinematically dissimilar master-slave control scheme. In order to avoid drag and other effects such as friction or other non-linear and unmodelled slave arm effects of the common position-position architecture in nonbackdrivable slaves, this research has implemented a force-position control scheme. End-effector force is derived from motor torque values which, to avoid the use of radiation intolerant and costly sensing devices, are inferred from motor current measurement. This has been demonstrated on a 1-DOF test-rig with a permanent magnet synchronous motor teleoperated by a Sensable Phantom Omni® haptic master. This has been shown to allow accurate control while realistically conveying dynamic force information back to the operator

    Force Estimation for Teleoperating Industrial Robots

    Get PDF
    As the energy on the particle accelerators or heavy ion accelerators such as CERN or GSI, fusion reactors such as JET or ITER, or other scientific experiments is increased, it is becoming increasingly necessary to use remote handling techniques in order to interact with the remote and radioactive environment

    External force estimation for telerobotics without force sensor

    Get PDF
    This paper establishes an approach to external force estimation through the use of a mathematical model and current sensing, without employing a force/torque sensor. The advantages and need for force feedback have been well established in the field of telerobotics. This paper presents the requirement for sensorless force estimation and comparative results between a force sensor and the presented approach using an industrial robot. The approach presents not only a cost effective solution but also a solution for force sensing in hazardous environments, especially ionizing radiation prone environments where the dose rates limit the use of sensing equipment. The paper also discusses the applications and advantages presented by this work in various fields

    Optimal motion control and vibration suppression of flexible systems with inaccessible outputs

    Get PDF
    This work addresses the optimal control problem of dynamical systems with inaccessible outputs. A case in which dynamical system outputs cannot be measured or inaccessible. This contradicts with the nature of the optimal controllers which can be considered without any loss of generality as state feedback control laws for systems with linear dynamics. Therefore, this work attempts to estimate dynamical system states through a novel state observer that does not require injecting the dynamical system outputs onto the observer structure during its design. A linear quadratic optimal control law is then realized based on the estimated states which allows controlling motion along with active vibration suppression of this class of dynamical systems with inaccessible outputs. Validity of the proposed control framework is evaluated experimentally

    Master-Slave Coordination Using Virtual Constraints for a Redundant Dual-Arm Haptic Interface

    Get PDF
    Programming robots for tasks involving force interaction is difficult, since both the knowledge of the task and the dynamics of the robots are necessary. An immersive haptic interface for task demonstration is proposed, where theoperator can sense and act through the robot. This is achieved by coupling two robotic systems with virtual constraints such that they have the same coordinates in the operational space disregarding a fixed offset. Limitations caused by the singular configurations or the reach of the robots are naturally reflected to either side as haptic feedback

    Bilateral Teleoperation for Linear Force Sensorless 3D Robots

    Get PDF
    Abstract. It is well known that for bilateral teleoperation, force feedback information is needed. In this paper, we propose a control approach for bilateral teleoperation with uncertainties in the model of the slave robot and which does not use force sensors for haptic feedback. The controller design is based on a cyclic switching algorithm. In the first phase of the cyclic algorithm, we estimate the environmental force acting on the slave robot and in the second phase a tracking controller ensures that the position of the slave robot is tracking the position of the master robot. A stability analysis of the overall closed-loop system is presented and the approach is illustrated by means of an example
    corecore