124,773 research outputs found

    Smart Bike Sharing System to make the City even Smarter

    Full text link
    These last years with the growing population in the smart city demands an efficient transportation sharing (bike sharing) system for developing the smart city. The Bike sharing as we know is affordable, easily accessible and reliable mode of transportation. But an efficient bike sharing capable of not only sharing bike also provides information regarding the availability of bike per station, route business, time/day-wise bike schedule. The embedded sensors are able to opportunistically communicate through wireless communication with stations when available, providing real-time data about tours/minutes, speed, effort, rhythm, etc. We have been based on our study analysis data to predict regarding the bike's available at stations, bike schedule, a location of the nearest hub where a bike is available etc., reduce the user time and effort

    Unveiling E-bike potential for commuting trips from GPS traces

    Get PDF
    Common goals of sustainable mobility approaches are to reduce the need for travel, to facilitate modal shifts, to decrease trip distances and to improve energy efficiency in the transportation systems. Among these issues, modal shift plays an important role for the adoption of vehicles with fewer or zero emissions. Nowadays, the electric bike (e-bike) is becoming a valid alternative to cars in urban areas. However, to promote modal shift, a better understanding of the mobility behaviour of e-bike users is required. In this paper, we investigate the mobility habits of e-bikers using GPS data collected in Belgium from 2014 to 2015. By analysing more than 10,000 trips, we provide insights about e-bike trip features such as: distance, duration and speed. In addition, we offer a deep look into which routes are preferred by bike owners in terms of their physical characteristics and how weather influences e-bike usage. Results show that trips with higher travel distances are performed during working days and are correlated with higher average speeds. Usage patterns extracted from our data set also indicate that e-bikes are preferred for commuting (home-work) and business (work related) trips rather than for recreational trips

    Investigating the mobility habits of electric bike owners through GPS data

    Get PDF
    This paper investigates the mobility habits of electric bike owners as well as their preferred routes. Through a GPS tracking campaign conducted in the city of Ghent (Belgium) we analyze the mobility habits (travel distance, time spent, speed) during the week of some e-bike users. Moreover, we propose the results of our map matching, based on the Hausdorff criterion, and preliminary results on the route choice of our sample. We strongly believe that investigating the behavior of electric bikes’ owners can help us in better understanding how to incentivize the use of this mode of transport. First results show that the trips with a higher travel distance are performed during the working days. It could be easily correlated with the daily commuting trips (home-work). Moreover, the results of our map-matching highlight how 61% of the trips are performed using the shortest path

    Improving Livability Using Green and Active Modes: A Traffic Stress Level Analysis of Transit, Bicycle, and Pedestrian Access and Mobility

    Get PDF
    Understanding the relative attractiveness of alternatives to driving is vitally important toward lowering driving rates and, by extension, vehicle miles traveled (VMT), traffic congestion, greenhouse gas (GHG) emissions, etc. The relative effectiveness of automobile alternatives (i.e., buses, bicycling, and walking) depends on how well streets are designed to work for these respective modes in terms of safety, comfort and cost, which can sometimes pit their relative effectiveness against each other. In this report, the level of traffic stress (LTS) criteria previously developed by two of the authors was used to determine how the streets functioned for these auto alternative modes. The quality and extent of the transit service area was measured using a total travel time metric over the LTS network. The model developed in this study was applied to two transit routes in Oakland, California, and Denver, Colorado
    corecore