186,134 research outputs found

    Big Data Analytics for Smart Cities: The H2020 CLASS Project

    Get PDF
    Applying big-data technologies to field applications has resulted in several new needs. First, processing data across a compute continuum spanning from cloud to edge to devices, with varying capacity, architecture etc. Second, some computations need to be made predictable (real-time response), thus supporting both data-in-motion processing and larger-scale data-at-rest processing. Last, employing an event-driven programming model that supports mixing different APIs and models, such as Map/Reduce, CEP, sequential code, etc.The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the CLASS Project (www.class-project.eu), grant agreement No. 780622.Peer ReviewedPostprint (author's final draft

    Big Data Caching for Networking: Moving from Cloud to Edge

    Full text link
    In order to cope with the relentless data tsunami in 5G5G wireless networks, current approaches such as acquiring new spectrum, deploying more base stations (BSs) and increasing nodes in mobile packet core networks are becoming ineffective in terms of scalability, cost and flexibility. In this regard, context-aware 55G networks with edge/cloud computing and exploitation of \emph{big data} analytics can yield significant gains to mobile operators. In this article, proactive content caching in 55G wireless networks is investigated in which a big data-enabled architecture is proposed. In this practical architecture, vast amount of data is harnessed for content popularity estimation and strategic contents are cached at the BSs to achieve higher users' satisfaction and backhaul offloading. To validate the proposed solution, we consider a real-world case study where several hours of mobile data traffic is collected from a major telecom operator in Turkey and a big data-enabled analysis is carried out leveraging tools from machine learning. Based on the available information and storage capacity, numerical studies show that several gains are achieved both in terms of users' satisfaction and backhaul offloading. For example, in the case of 1616 BSs with 30%30\% of content ratings and 1313 Gbyte of storage size (78%78\% of total library size), proactive caching yields 100%100\% of users' satisfaction and offloads 98%98\% of the backhaul.Comment: accepted for publication in IEEE Communications Magazine, Special Issue on Communications, Caching, and Computing for Content-Centric Mobile Network

    Big Data Meets Telcos: A Proactive Caching Perspective

    Full text link
    Mobile cellular networks are becoming increasingly complex to manage while classical deployment/optimization techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps. This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data. However, the big data by itself is yet another complex phenomena to handle and comes with its notorious 4V: velocity, voracity, volume and variety. In this work, we address these issues in optimization of 5G wireless networks via the notion of proactive caching at the base stations. In particular, we investigate the gains of proactive caching in terms of backhaul offloadings and request satisfactions, while tackling the large-amount of available data for content popularity estimation. In order to estimate the content popularity, we first collect users' mobile traffic data from a Turkish telecom operator from several base stations in hours of time interval. Then, an analysis is carried out locally on a big data platform and the gains of proactive caching at the base stations are investigated via numerical simulations. It turns out that several gains are possible depending on the level of available information and storage size. For instance, with 10% of content ratings and 15.4 Gbyte of storage size (87% of total catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of the backhaul when considering 16 base stations.Comment: 8 pages, 5 figure

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Saving Energy on Edge: In-Memory Caching for Multi-Tier Heterogeneous Network

    Get PDF
    Recent years have witnessed billions of new manufactured sensors, equipments, and machines being connected to our almost omnipotent Internet. While enjoying the comfort and convenience brought by IoT, we also have to face tremendous energy consumption and carbon emissions that even cause climate deterioration. Extended from cloud computing, edge/fog computing and caching provide new thoughts on processing big data generated from distributed IoT devices. With the purpose of helping deal with the data explosion problem by edge caching, in this article we apply in-memory storage and processing to reduce energy consumption. We design two kinds of TTL in four cache replacement policies to cache data at the edge. We carry out a simulation experiment in a three-tier heterogeneous network structure using the RWP model and test the performance of in-memory caching and the traditional method. The analysis results manifest that our in-memory method is able to obtain better energy efficiency in edge caching, and has stable and low backhaul rate

    Edge-Cloud Synergy: Unleashing the Potential of Parallel Processing for Big Data Analytics

    Get PDF
    If an edge-node orchestrator can partition Big Data tasks of variable computational complexity between the edge and cloud resources, major reductions in total task completion times can be achieved even at low Wide Area Network (WAN) speeds. The percentage time savings are greater with increasing task computational complexity and higher WAN speeds are required for low-complexity tasks. We demonstrate from numerical simulations that low-complexity tasks can benefit either by task partitioning between an edge node and multiple cloud servers. The orchestrator can also achieve greater time benefits by rerouting Big Data tasks directly to a single cloud resource if the balance of parameters (WAN speed and the ratio between edge and cloud processing speeds) is favourable

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    corecore