184 research outputs found
Bidirectional imperfect quantum teleportation with a single Bell state
We present a bidirectional modification of the standard one-qubit
teleportation protocol, where both Alice and Bob transfer noisy versions of
their qubit states to each other by using single Bell state and auxiliary
(trigger) qubits. Three schemes are considered: the first where the actions of
parties are governed by two independent quantum random triggers, the second
with single random trigger, and the third as a mixture of the first two. We
calculate the fidelities of teleportation for all schemes and find a condition
on correlation between trigger qubits in the mixed scheme which allows us to
overcome the classical fidelity boundary of 2/3. We apply the Choi-Jamiolkowski
isomorphism to the quantum channels obtained in order to investigate an
interplay between their ability to transfer the information,
entanglement-breaking property, and auxiliary classical communication needed to
form correlations between trigger qubits. The suggested scheme for
bidirectional teleportation can be realized by using current experimental
tools.Comment: 8 pages, 4 figures; published versio
Recursive quantum repeater networks
Internet-scale quantum repeater networks will be heterogeneous in physical
technology, repeater functionality, and management. The classical control
necessary to use the network will therefore face similar issues as Internet
data transmission. Many scalability and management problems that arose during
the development of the Internet might have been solved in a more uniform
fashion, improving flexibility and reducing redundant engineering effort.
Quantum repeater network development is currently at the stage where we risk
similar duplication when separate systems are combined. We propose a unifying
framework that can be used with all existing repeater designs. We introduce the
notion of a Quantum Recursive Network Architecture, developed from the emerging
classical concept of 'recursive networks', extending recursive mechanisms from
a focus on data forwarding to a more general distributed computing request
framework. Recursion abstracts independent transit networks as single relay
nodes, unifies software layering, and virtualizes the addresses of resources to
improve information hiding and resource management. Our architecture is useful
for building arbitrary distributed states, including fundamental distributed
states such as Bell pairs and GHZ, W, and cluster states.Comment: 14 page
Quantum teleportation using active feed-forward between two Canary Islands
Quantum teleportation [1] is a quintessential prerequisite of many quantum
information processing protocols [2-4]. By using quantum teleportation, one can
circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum
states to a party whose location is even unknown over arbitrary distances. Ever
since the first experimental demonstrations of quantum teleportation of
independent qubits [6] and of squeezed states [7], researchers have
progressively extended the communication distance in teleportation, usually
without active feed-forward of the classical Bell-state measurement result
which is an essential ingredient in future applications such as communication
between quantum computers. Here we report the first long-distance quantum
teleportation experiment with active feed-forward in real time. The experiment
employed two optical links, quantum and classical, over 143 km free space
between the two Canary Islands of La Palma and Tenerife. To achieve this, the
experiment had to employ novel techniques such as a frequency-uncorrelated
polarization-entangled photon pair source, ultra-low-noise single-photon
detectors, and entanglement-assisted clock synchronization. The average
teleported state fidelity was well beyond the classical limit of 2/3.
Furthermore, we confirmed the quality of the quantum teleportation procedure
(without feed-forward) by complete quantum process tomography. Our experiment
confirms the maturity and applicability of the involved technologies in
real-world scenarios, and is a milestone towards future satellite-based quantum
teleportation
Twisted Photons: New Quantum Perspectives in High Dimensions
Quantum information science and quantum information technology have seen a
virtual explosion world-wide. It is all based on the observation that
fundamental quantum phenomena on the individual particle or system-level lead
to completely novel ways of encoding, processing and transmitting information.
Quantum mechanics, a child of the first third of the 20th century, has found
numerous realizations and technical applications, much more than was thought at
the beginning. Decades later, it became possible to do experiments with
individual quantum particles and quantum systems. This was due to technological
progress, and for light in particular, the development of the laser. Hitherto,
nearly all experiments and also nearly all realizations in the fields have been
performed with qubits, which are two-level quantum systems. We suggest that
this limitation is again mainly a technological one, because it is very
difficult to create, manipulate and measure more complex quantum systems. Here,
we provide a specific overview of some recent developments with
higher-dimensional quantum systems. We mainly focus on Orbital Angular Momentum
(OAM) states of photons and possible applications in quantum information
protocols. Such states form discrete higher-dimensional quantum systems, also
called qudits. Specifically, we will first address the question what kind of
new fundamental properties exist and the quantum information applications which
are opened up by such novel systems. Then we give an overview of recent
developments in the field by discussing several notable experiments over the
past 2-3 years. Finally, we conclude with several important open questions
which will be interesting for investigations in the future.Comment: 15 pages, 7 figure
Classical light vs. nonclassical light: Characterizations and interesting applications
We briefly review the ideas that have shaped modern optics and have led to
various applications of light ranging from spectroscopy to astrophysics, and
street lights to quantum communication. The review is primarily focused on the
modern applications of classical light and nonclassical light. Specific
attention has been given to the applications of squeezed, antibunched, and
entangled states of radiation field. Applications of Fock states (especially
single photon states) in the field of quantum communication are also discussed.Comment: 32 pages, 3 figures, a review on applications of ligh
Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity
We propose a nonlocal entanglement concentration protocol (ECP) for
-photon systems in a partially entangled W state, resorting to some
ancillary single photons and the parity-check measurement based on cross-Kerr
nonlinearity. One party in quantum communication first performs a parity-check
measurement on her photon in an -photon system and an ancillary photon, and
then she picks up the even-parity instance for obtaining the standard W state.
When she obtains an odd-parity instance, the system is in a less-entanglement
state and it is the resource in the next round of entanglement concentration.
By iterating the entanglement concentration process several times, the present
ECP has the total success probability approaching to the limit in theory. The
present ECP has the advantage of a high success probability. Moreover, the
present ECP requires only the -photon system itself and some ancillary
single photons, not two copies of the systems, which decreases the difficulty
of its implementation largely in experiment. It maybe have good applications in
quantum communication in future.Comment: 7 pages, 3 figure
Intrinsically narrowband pair photon generation in microstructured fibres
In this paper we study the tailoring of photon spectral properties generated
by four-wave mixing in a birefringent photonic crystal fibre (PCF). The aim is
to produce intrinsically narrow-band photons and hence to achieve high
non-classical interference visibility and generate high fidelity entanglement
without any requirement for spectral filtering, leading to high effective
detection efficiencies. We show unfiltered Hong-Ou-Mandel interference
visibilities of 77% between photons from the same PCF, and 80% between separate
sources. We compare results from modelling the PCF to these experiments and
analyse photon purities.Comment: 23 pages, 17 figures, Comments Welcom
- …
