1,095 research outputs found

    Statistical Arbitrage Mining for Display Advertising

    Full text link
    We study and formulate arbitrage in display advertising. Real-Time Bidding (RTB) mimics stock spot exchanges and utilises computers to algorithmically buy display ads per impression via a real-time auction. Despite the new automation, the ad markets are still informationally inefficient due to the heavily fragmented marketplaces. Two display impressions with similar or identical effectiveness (e.g., measured by conversion or click-through rates for a targeted audience) may sell for quite different prices at different market segments or pricing schemes. In this paper, we propose a novel data mining paradigm called Statistical Arbitrage Mining (SAM) focusing on mining and exploiting price discrepancies between two pricing schemes. In essence, our SAMer is a meta-bidder that hedges advertisers' risk between CPA (cost per action)-based campaigns and CPM (cost per mille impressions)-based ad inventories; it statistically assesses the potential profit and cost for an incoming CPM bid request against a portfolio of CPA campaigns based on the estimated conversion rate, bid landscape and other statistics learned from historical data. In SAM, (i) functional optimisation is utilised to seek for optimal bidding to maximise the expected arbitrage net profit, and (ii) a portfolio-based risk management solution is leveraged to reallocate bid volume and budget across the set of campaigns to make a risk and return trade-off. We propose to jointly optimise both components in an EM fashion with high efficiency to help the meta-bidder successfully catch the transient statistical arbitrage opportunities in RTB. Both the offline experiments on a real-world large-scale dataset and online A/B tests on a commercial platform demonstrate the effectiveness of our proposed solution in exploiting arbitrage in various model settings and market environments.Comment: In the proceedings of the 21st ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2015

    Real-Time Bidding by Reinforcement Learning in Display Advertising

    Get PDF
    The majority of online display ads are served through real-time bidding (RTB) --- each ad display impression is auctioned off in real-time when it is just being generated from a user visit. To place an ad automatically and optimally, it is critical for advertisers to devise a learning algorithm to cleverly bid an ad impression in real-time. Most previous works consider the bid decision as a static optimization problem of either treating the value of each impression independently or setting a bid price to each segment of ad volume. However, the bidding for a given ad campaign would repeatedly happen during its life span before the budget runs out. As such, each bid is strategically correlated by the constrained budget and the overall effectiveness of the campaign (e.g., the rewards from generated clicks), which is only observed after the campaign has completed. Thus, it is of great interest to devise an optimal bidding strategy sequentially so that the campaign budget can be dynamically allocated across all the available impressions on the basis of both the immediate and future rewards. In this paper, we formulate the bid decision process as a reinforcement learning problem, where the state space is represented by the auction information and the campaign's real-time parameters, while an action is the bid price to set. By modeling the state transition via auction competition, we build a Markov Decision Process framework for learning the optimal bidding policy to optimize the advertising performance in the dynamic real-time bidding environment. Furthermore, the scalability problem from the large real-world auction volume and campaign budget is well handled by state value approximation using neural networks.Comment: WSDM 201

    Online Model Evaluation in a Large-Scale Computational Advertising Platform

    Full text link
    Online media provides opportunities for marketers through which they can deliver effective brand messages to a wide range of audiences. Advertising technology platforms enable advertisers to reach their target audience by delivering ad impressions to online users in real time. In order to identify the best marketing message for a user and to purchase impressions at the right price, we rely heavily on bid prediction and optimization models. Even though the bid prediction models are well studied in the literature, the equally important subject of model evaluation is usually overlooked. Effective and reliable evaluation of an online bidding model is crucial for making faster model improvements as well as for utilizing the marketing budgets more efficiently. In this paper, we present an experimentation framework for bid prediction models where our focus is on the practical aspects of model evaluation. Specifically, we outline the unique challenges we encounter in our platform due to a variety of factors such as heterogeneous goal definitions, varying budget requirements across different campaigns, high seasonality and the auction-based environment for inventory purchasing. Then, we introduce return on investment (ROI) as a unified model performance (i.e., success) metric and explain its merits over more traditional metrics such as click-through rate (CTR) or conversion rate (CVR). Most importantly, we discuss commonly used evaluation and metric summarization approaches in detail and propose a more accurate method for online evaluation of new experimental models against the baseline. Our meta-analysis-based approach addresses various shortcomings of other methods and yields statistically robust conclusions that allow us to conclude experiments more quickly in a reliable manner. We demonstrate the effectiveness of our evaluation strategy on real campaign data through some experiments.Comment: Accepted to ICDM201

    Evaluating and Optimizing Online Advertising: Forget the click, but there are good proxies

    Get PDF
    A main goal of online display advertising is to drive purchases (etc.) following ad engagement. However, there often are too few purchase conversions for campaign evaluation and optimization, due to low conversion rates, cold start periods, and long purchase cycles (e.g., with brand advertising). This paper presents results across dozens of experiments within individual online display advertising campaigns, each comparing different 'proxies' for measuring success. Measuring success is critical both for evaluating and comparing different targeting strategies, and for designing and optimizing the strategies in the first place (for example, via predictive modeling). Proxies are necessary because data on the actual goals of advertising (e.g., purchasing, increased brand affinity, etc.) often are scarce, missing, or fundamentally difficult or impossible to observe. The paper presents bad news and good news. The most commonly cited and used proxy for success is a click on an advertisement. The bad news is that across a large number of campaigns, clicks are not good proxies for evaluation nor for optimization: buyers do not resemble clickers. The good news is that an alternative sort of proxy performs remarkably well: observed visits to the brand's website. Specifically, predictive models built based on brand site visits do a remarkably good job of predicting which browsers will purchase. The practical bottom line: evaluating campaigns and optimizing based on clicks seems wrongheaded; however, there is an easy and attractive alternative|use a well-chosen site visit proxy instead.m6d research; NYU Stern School of Busines
    • …
    corecore