157 research outputs found

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k−1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    Prize-Collecting Steiner Networks via Iterative Rounding

    Full text link
    Abstract. In this paper we design an iterative rounding approach for the classic prize-collecting Steiner forest problem and more generally the prize-collecting survivable Steiner network design problem. We show as an structural result that in each iteration of our algorithm there is an LP variable in a basic feasible solution which is at least one-third-integral resulting a 3-approximation algorithm for this problem. In addition, we show this factor 3 in our structural result is indeed tight for prize-collecting Steiner forest and thus prize-collecting survivable Steiner network design. This especially answers negatively the previous belief that one might be able to obtain an approximation factor better than 3 for these problems using a natural iterative rounding approach. Our structural result is extending the celebrated iterative rounding approach of Jain [13] by using several new ideas some from more complicated linear algebra. The approach of this paper can be also applied to get a constant factor (bicriteria-)approximation algorithm for degree constrained prize-collecting network design problems. We emphasize that though in theory we can prove existence of only an LP variable of at least one-third-integral, in practice very often in each iteration there exists a variable of integral or almost integral which results in a much better approximation factor than provable factor 3 in this paper (see patent application [11]). This is indeed the advantage of our algorithm in this paper over previous approximation algorithms for prize-collecting Steiner forest with the same or slightly better provable approximation factors.

    Knapsack Cover Subject to a Matroid Constraint

    Get PDF
    We consider the Knapsack Covering problem subject to a matroid constraint. In this problem, we are given an universe U of n items where item i has attributes: a cost c(i) and a size s(i). We also have a demand D. We are also given a matroid M = (U, I) on the set U. A feasible solution S to the problem is one such that (i) the cumulative size of the items chosen is at least D, and (ii) the set S is independent in the matroid M (i.e. S is in I). The objective is to minimize the total cost of the items selected, sum_{i in S}c(i). Our main result proves a 2-factor approximation for this problem. The problem described above falls in the realm of mixed packing covering problems. We also consider packing extensions of certain other covering problems and prove that in such cases it is not possible to derive any constant factor pproximations

    Further Approximations for Demand Matching: Matroid Constraints and Minor-Closed Graphs

    Get PDF
    We pursue a study of the Generalized Demand Matching problem, a common generalization of the b-Matching and Knapsack problems. Here, we are given a graph with vertex capacities, edge profits, and asymmetric demands on the edges. The goal is to find a maximum-profit subset of edges so the demands of chosen edges do not violate the vertex capacities. This problem is APX-hard and constant-factor approximations are already known. Our main results fall into two categories. First, using iterated relaxation and various filtering strategies, we show with an efficient rounding algorithm that if an additional matroid structure M is given and we further only allow sets that are independent in M, the natural LP relaxation has an integrality gap of at most 25/3. This can be further improved in various special cases, for example we improve over the 15-approximation for the previously- studied Coupled Placement problem [Korupolu et al. 2014] by giving a 7-approximation. Using similar techniques, we show the problem of computing a minimum-cost base in M satisfying vertex capacities admits a (1,3)-bicriteria approximation: the cost is at most the optimum and the capacities are violated by a factor of at most 3. This improves over the previous (1,4)-approximation in the special case that M is the graphic matroid over the given graph [Fukanaga and Nagamochi, 2009]. Second, we show Demand Matching admits a polynomial-time approximation scheme in graphs that exclude a fixed minor. If all demands are polynomially-bounded integers, this is somewhat easy using dynamic programming in bounded-treewidth graphs. Our main technical contribution is a sparsification lemma that allows us to scale the demands of some items to be used in a more intricate dynamic programming algorithm, followed by some randomized rounding to filter our scaled-demand solution to one whose original demands satisfy all constraints

    Pruning 2-Connected Graphs

    Get PDF
    Given an edge-weighted undirected graph GG with a specified set of terminals, let the emph{density} of any subgraph be the ratio of its weight/cost to the number of terminals it contains. If GG is 2-connected, does it contain smaller 2-connected subgraphs of density comparable to that of GG? We answer this question in the affirmative by giving an algorithm to emph{prune} GG and find such subgraphs of any desired size, at the cost of only a logarithmic increase in density (plus a small additive factor). We apply the pruning techniques to give algorithms for two NP-Hard problems on finding large 2-vertex-connected subgraphs of low cost; no previous approximation algorithm was known for either problem. In the kv problem, we are given an undirected graph GG with edge costs and an integer kk; the goal is to find a minimum-cost 2-vertex-connected subgraph of GG containing at least kk vertices. In the bv problem, we are given the graph GG with edge costs, and a budget BB; the goal is to find a 2-vertex-connected subgraph HH of GG with total edge cost at most BB that maximizes the number of vertices in HH. We describe an O(lognlogk)O(log n log k) approximation for the kv problem, and a bicriteria approximation for the bv problem that gives an O(frac1epslog2n)O(frac{1}{eps}log^2 n) approximation, while violating the budget by a factor of at most 3+eps3+eps
    • …
    corecore