6 research outputs found

    More Structural Characterizations of Some Subregular Language Families by Biautomata

    Full text link
    We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly permutation-freeness, and orderability, to mention a few. We compare the obtained language families with those induced by deterministic finite automata with the same property. In some cases, it is shown that there is no difference in characterization between deterministic finite automata and biautomata as for the permutation-freeness, but there are also other cases, where it makes a big difference whether one considers deterministic finite automata or biautomata. This is, for instance, the case when comparing strongly permutation-freeness, which results in the family of definite language for deterministic finite automata, while biautomata induce the family of finite and co-finite languages. The obtained results nicely fall into the known landscape on classical language families.Comment: In Proceedings AFL 2014, arXiv:1405.527

    On Varieties of Automata Enriched with an Algebraic Structure (Extended Abstract)

    Full text link
    Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular languages with pseudovarieties of finite monoids. Various modifications of this correspondence related more general classes of regular languages with classes of more complex algebraic objects. Such generalized varieties also have natural counterparts formed by classes of finite automata equipped with a certain additional algebraic structure. In this survey, we overview several variants of such varieties of enriched automata.Comment: In Proceedings AFL 2014, arXiv:1405.527

    On shuffle products, acyclic automata and piecewise-testable languages

    Full text link
    We show that the shuffle L \unicode{x29E2} F of a piecewise-testable language LL and a finite language FF is piecewise-testable. The proof relies on a classic but little-used automata-theoretic characterization of piecewise-testable languages. We also discuss some mild generalizations of the main result, and provide bounds on the piecewise complexity of L \unicode{x29E2} F

    On Varieties of Ordered Automata

    Full text link
    The Eilenberg correspondence relates varieties of regular languages to pseudovarieties of finite monoids. Various modifications of this correspondence have been found with more general classes of regular languages on one hand and classes of more complex algebraic structures on the other hand. It is also possible to consider classes of automata instead of algebraic structures as a natural counterpart of classes of languages. Here we deal with the correspondence relating positive C\mathcal C-varieties of languages to positive C\mathcal C-varieties of ordered automata and we present various specific instances of this correspondence. These bring certain well-known results from a new perspective and also some new observations. Moreover, complexity aspects of the membership problem are discussed both in the particular examples and in a general setting

    Syntactic Complexity of R- and J-Trivial Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of R- and J-trivial regular languages, and prove that n! and floor of [e(n-1)!] are tight upper bounds for these languages, respectively. We also prove that 2^{n-1} is the tight upper bound on the state complexity of reversal of J-trivial regular languages.Comment: 17 pages, 5 figures, 1 tabl

    Syntactic Complexities of Nine Subclasses of Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of suffix-, bifix-, and factor-free regular languages, star-free languages including three subclasses, and R- and J-trivial regular languages. We found upper bounds on the syntactic complexities of these classes of languages. For R- and J-trivial regular languages, the upper bounds are n! and ⌊e(n-1)!⌋, respectively, and they are tight for n >= 1. Let C^n_k be the binomial coefficient ``n choose k''. For monotonic languages, the tight upper bound is C^{2n-1}_n. We also found tight upper bounds for partially monotonic and nearly monotonic languages. For the other classes of languages, we found tight upper bounds for languages with small state complexities, and we exhibited languages with maximal known syntactic complexities. We conjecture these lower bounds to be tight upper bounds for these languages. We also observed that, for some subclasses C of regular languages, the upper bound on state complexity of the reversal operation on languages in C can be met by languages in C with maximal syntactic complexity. For R- and J-trivial regular languages, we also determined tight upper bounds on the state complexity of the reversal operation
    corecore