11,812 research outputs found

    Biases for Emergent Communication in Multi-agent Reinforcement Learning

    Get PDF
    We study the problem of emergent communication, in which language arises because speakers and listeners must communicate information in order to solve tasks. In temporally extended reinforcement learning domains, it has proved hard to learn such communication without centralized training of agents, due in part to a difficult joint exploration problem. We introduce inductive biases for positive signalling and positive listening, which ease this problem. In a simple one-step environment, we demonstrate how these biases ease the learning problem. We also apply our methods to a more extended environment, showing that agents with these inductive biases achieve better performance, and analyse the resulting communication protocols.Comment: Accepted at NeurIPS 201

    Adaptive Load Balancing: A Study in Multi-Agent Learning

    Full text link
    We study the process of multi-agent reinforcement learning in the context of load balancing in a distributed system, without use of either central coordination or explicit communication. We first define a precise framework in which to study adaptive load balancing, important features of which are its stochastic nature and the purely local information available to individual agents. Given this framework, we show illuminating results on the interplay between basic adaptive behavior parameters and their effect on system efficiency. We then investigate the properties of adaptive load balancing in heterogeneous populations, and address the issue of exploration vs. exploitation in that context. Finally, we show that naive use of communication may not improve, and might even harm system efficiency.Comment: See http://www.jair.org/ for any accompanying file

    Learning with Opponent-Learning Awareness

    Full text link
    Multi-agent settings are quickly gathering importance in machine learning. This includes a plethora of recent work on deep multi-agent reinforcement learning, but also can be extended to hierarchical RL, generative adversarial networks and decentralised optimisation. In all these settings the presence of multiple learning agents renders the training problem non-stationary and often leads to unstable training or undesired final results. We present Learning with Opponent-Learning Awareness (LOLA), a method in which each agent shapes the anticipated learning of the other agents in the environment. The LOLA learning rule includes a term that accounts for the impact of one agent's policy on the anticipated parameter update of the other agents. Results show that the encounter of two LOLA agents leads to the emergence of tit-for-tat and therefore cooperation in the iterated prisoners' dilemma, while independent learning does not. In this domain, LOLA also receives higher payouts compared to a naive learner, and is robust against exploitation by higher order gradient-based methods. Applied to repeated matching pennies, LOLA agents converge to the Nash equilibrium. In a round robin tournament we show that LOLA agents successfully shape the learning of a range of multi-agent learning algorithms from literature, resulting in the highest average returns on the IPD. We also show that the LOLA update rule can be efficiently calculated using an extension of the policy gradient estimator, making the method suitable for model-free RL. The method thus scales to large parameter and input spaces and nonlinear function approximators. We apply LOLA to a grid world task with an embedded social dilemma using recurrent policies and opponent modelling. By explicitly considering the learning of the other agent, LOLA agents learn to cooperate out of self-interest. The code is at github.com/alshedivat/lola

    Multi-lingual agents through multi-headed neural networks

    Get PDF
    This paper considers cooperative Multi-Agent Reinforcement Learning, focusing on emergent communication in settings where multiple pairs of independent learners interact at varying frequencies. In this context, multiple distinct and incompatible languages can emerge. When an agent encounters a speaker of an alternative language, there is a requirement for a period of adaptation before they can efficiently converse. This adaptation results in the emergence of a new language and the forgetting of the previous language. In principle, this is an example of the Catastrophic Forgetting problem which can be mitigated by enabling the agents to learn and maintain multiple languages. We take inspiration from the Continual Learning literature and equip our agents with multi-headed neural networks which enable our agents to be multi-lingual. Our method is empirically validated within a referential MNIST based communication game and is shown to be able to maintain multiple languages where existing approaches cannot.Comment: Cooperative AI workshop NeurIPS 202

    Towards More Human-like AI Communication: A Review of Emergent Communication Research

    Full text link
    In the recent shift towards human-centric AI, the need for machines to accurately use natural language has become increasingly important. While a common approach to achieve this is to train large language models, this method presents a form of learning misalignment where the model may not capture the underlying structure and reasoning humans employ in using natural language, potentially leading to unexpected or unreliable behavior. Emergent communication (Emecom) is a field of research that has seen a growing number of publications in recent years, aiming to develop artificial agents capable of using natural language in a way that goes beyond simple discriminative tasks and can effectively communicate and learn new concepts. In this review, we present Emecom under two aspects. Firstly, we delineate all the common proprieties we find across the literature and how they relate to human interactions. Secondly, we identify two subcategories and highlight their characteristics and open challenges. We encourage researchers to work together by demonstrating that different methods can be viewed as diverse solutions to a common problem and emphasize the importance of including diverse perspectives and expertise in the field. We believe a deeper understanding of human communication is crucial to developing machines that can accurately use natural language in human-machine interactions.Comment: 25 pages, 9 figures, 2 table
    • …
    corecore