12,615 research outputs found

    Detecting Outliers in Data with Correlated Measures

    Full text link
    Advances in sensor technology have enabled the collection of large-scale datasets. Such datasets can be extremely noisy and often contain a significant amount of outliers that result from sensor malfunction or human operation faults. In order to utilize such data for real-world applications, it is critical to detect outliers so that models built from these datasets will not be skewed by outliers. In this paper, we propose a new outlier detection method that utilizes the correlations in the data (e.g., taxi trip distance vs. trip time). Different from existing outlier detection methods, we build a robust regression model that explicitly models the outliers and detects outliers simultaneously with the model fitting. We validate our approach on real-world datasets against methods specifically designed for each dataset as well as the state of the art outlier detectors. Our outlier detection method achieves better performances, demonstrating the robustness and generality of our method. Last, we report interesting case studies on some outliers that result from atypical events.Comment: 10 page

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Robust Linear Spectral Unmixing using Anomaly Detection

    Full text link
    This paper presents a Bayesian algorithm for linear spectral unmixing of hyperspectral images that accounts for anomalies present in the data. The model proposed assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional nonlinear term modelling anomalies and additive Gaussian noise. A Markov random field is used for anomaly detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and anomaly detection algorithm. Simulations conducted with synthetic and real hyperspectral images demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Discriminative Density-ratio Estimation

    Full text link
    The covariate shift is a challenging problem in supervised learning that results from the discrepancy between the training and test distributions. An effective approach which recently drew a considerable attention in the research community is to reweight the training samples to minimize that discrepancy. In specific, many methods are based on developing Density-ratio (DR) estimation techniques that apply to both regression and classification problems. Although these methods work well for regression problems, their performance on classification problems is not satisfactory. This is due to a key observation that these methods focus on matching the sample marginal distributions without paying attention to preserving the separation between classes in the reweighted space. In this paper, we propose a novel method for Discriminative Density-ratio (DDR) estimation that addresses the aforementioned problem and aims at estimating the density-ratio of joint distributions in a class-wise manner. The proposed algorithm is an iterative procedure that alternates between estimating the class information for the test data and estimating new density ratio for each class. To incorporate the estimated class information of the test data, a soft matching technique is proposed. In addition, we employ an effective criterion which adopts mutual information as an indicator to stop the iterative procedure while resulting in a decision boundary that lies in a sparse region. Experiments on synthetic and benchmark datasets demonstrate the superiority of the proposed method in terms of both accuracy and robustness

    Exploring Outliers in Crowdsourced Ranking for QoE

    Full text link
    Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin note: text overlap with arXiv:1407.763
    corecore