76,004 research outputs found
A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias
Free Fatty Acid Receptor 2 is a GPCR activated by short chain fatty acids produced in high levels in the lower gut by microbial fermentation of non-digestible carbohydrates. A major challenge in studying this receptor is that the mouse ortholog does not have significant affinity for antagonists that are able to block the human receptor. Docking of exemplar antagonists from two chemical series to homology models of both human and mouse Free Fatty Acid Receptor 2 suggested that a single lysine - arginine variation at the extracellular face of the receptor might provide the basis for antagonist selectivity and mutational swap studies confirmed this hypothesis. Extending these studies to agonist function indicated that although the lysine - arginine variation between human and mouse orthologs had limited effect on G protein-mediated signal transduction, removal of positive charge from this residue produced a signalling-biased variant of Free Fatty Acid Receptor 2 in which Gi-mediated signalling by both short chain fatty acids and synthetic agonists was maintained whilst there was marked loss of agonist potency for signalling via Gq/11 and G12/13 G proteins. A single residue at the extracellular face of the receptor thus plays key roles in both agonist and antagonist function
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics
Background and Purpose
Clinical use of cinacalcet in hyperparathyroidism is complicated by its tendency to induce hypocalcaemia, arising partly from activation of calcium-sensing receptors (CaS receptors) in the thyroid and stimulation of calcitonin release. CaS receptor allosteric modulators that selectively bias signalling towards pathways that mediate desired effects [e.g. parathyroid hormone (PTH) suppression] rather than those mediating undesirable effects (e.g. elevated serum calcitonin), may offer better therapies.
Experimental Approach
We characterized the ligand-biased profile of novel calcimimetics in HEK293 cells stably expressing human CaS receptors, by monitoring intracellular calcium (Ca2+i) mobilization, inositol phosphate (IP)1 accumulation, ERK1/2 phosphorylation (pERK1/2) and receptor expression.
Key Results
Phenylalkylamine calcimimetics were biased towards allosteric modulation of Ca2+i mobilization and IP1 accumulation. S,R-calcimimetic B was biased only towards IP1 accumulation. R,R-calcimimetic B and AC-265347 were biased towards IP1 accumulation and pERK1/2. Nor-calcimimetic B was unbiased. In contrast to phenylalkylamines and calcimimetic B analogues, AC-265347 did not promote trafficking of a loss-of-expression, naturally occurring, CaS receptor mutation (G670E).
Conclusions and Implications
The ability of R,R-calcimimetic B and AC-265347 to bias signalling towards pERK1/2 and IP1 accumulation may explain their suppression of PTH levels in vivo at concentrations that have no effect on serum calcitonin levels. The demonstration that AC-265347 promotes CaS receptor receptor signalling, but not trafficking reveals a novel profile of ligand-biased modulation at CaS receptors The identification of allosteric modulators that bias CaS receptor signalling towards distinct intracellular pathways provides an opportunity to develop desirable biased signalling profiles in vivo for mediating selective physiological responses
BMP2/BMPR1A is linked to tumour progression in dedifferentiated liposarcomas
Bone Morphogenic Protein 2 (BMP2) is a multipurpose cytokine, important in the development of bone and cartilage, and with a role in tumour initiation and progression. BMP2 signal transduction is dependent on two distinct classes of serine/threonine kinase known as the type I and type II receptors. Although the type I receptors (BMPR1A and BMPR1B) are largely thought to have overlapping functions, we find tissue and cellular compartment specific patterns of expression, suggesting potential for distinct BMP2 signalling outcomes dependent on tissue type. Herein, we utilise large publicly available datasets from The Cancer Genome Atlas (TCGA) and Protein Atlas to define a novel role for BMP2 in the progression of dedifferentiated liposarcomas. Using disease free survival as our primary endpoint, we find that BMP2 confers poor prognosis only within the context of high BMPR1A expression. Through further annotation of the TCGA sarcoma dataset, we localise this effect to dedifferentiated liposarcomas but find overall BMP2/BMP receptor expression is equal across subsets. Finally, through gene set enrichment analysis we link the BMP2/BMPR1A axis to increased transcriptional activity of the matrisome and general extracellular matrix remodelling. Our study highlights the importance of continued research into the tumorigenic properties of BMP2 and the potential disadvantages of recombinant human BMP2 (rhBMP2) use in orthopaedic surgery. For the first time, we identify high BMP2 expression within the context of high BMPR1A expression as a biomarker of disease relapse in dedifferentiated liposarcomas
A novel mechanism of action for angiotensin-(1-7) via the angiotensin type 1 receptor
No abstract available
Distinct phosphorylation clusters determines the signalling outcome of the free fatty acid receptor FFA4/GPR120
It is established that long-chain free fatty acids including ω-3 fatty acids mediate an array of biological responses through members of the free fatty acid receptor family, which includes FFA4. However, the signalling mechanisms and modes of regulation of this receptor class remain unclear. Here we employ mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C terminal tail, designated cluster 1 (Thr347, Thr349 and Ser350) and cluster 2 (Ser357 and Ser361). Mutation of these phospho-acceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to ERK1/2 activation. Rather an inhibitor of Gq/11 proteins completely prevented receptor signalling to ERK1/2. In contrast, the recruitment of arrestin 3, receptor internalization and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signalling was extended further by selective mutations of the phospho-acceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phospho-acceptor sites within cluster 1 had no effect on receptor internalization and a less extensive effect on arrestin 3 recruitment, but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signalling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signalling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C-terminus of the receptor
A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore
The function of chemical signalling in non-territorial solitary carnivores is still relatively unclear. Studies on territorial solitary and social carnivores have highlighted odour capability and utility, however the social function of chemical signalling in wild carnivore populations operating dominance hierarchy social systems has received little attention. We monitored scent marking and investigatory behaviour of wild brown bears Ursus arctos, to test multiple hypotheses relating to the social function of chemical signalling. Camera traps were stationed facing bear ‘marking trees’ to document behaviour by different age sex classes in different seasons. We found evidence to support the hypothesis that adult males utilise chemical signalling to communicate dominance to other males throughout the non-denning period. Adult females did not appear to utilise marking trees to advertise oestrous state during the breeding season. The function of marking by subadult bears is somewhat unclear, but may be related to the behaviour of adult males. Subadults investigated trees more often than they scent marked during the breeding season, which could be a result of an increased risk from adult males. Females with young showed an increase in marking and investigation of trees outside of the breeding season. We propose the hypothesis that females engage their dependent young with marking trees from a young age, at a relatively ‘safe’ time of year. Memory, experience, and learning at a young age, may all contribute towards odour capabilities in adult bears
Recommended from our members
Biased signalling is an essential feature of TLR4 in glioma cells
A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different bacterial species have different endotoxic activity, the impact of LPS chemotype on the downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-tumoural activity in animal models of glioma, but the underlying molecular mechanisms are largely unknown.
Thus, we investigated the impact of LPS chemotype on the signalling events in the human glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-β-cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-κB activity without affecting IRF3.
Our data may explain how TLR4 agonists differently affect glioma cell proliferation and migration
- …
