78,458 research outputs found

    Transductive Multi-view Embedding for Zero-Shot Recognition and Annotation

    Get PDF
    Abstract. Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation such as visual attributes or semantic word vectors. Such a semantic representation is shared between an annotated auxiliary dataset and a target dataset with no annotation. A projection from a low-level feature space to the seman-tic space is learned from the auxiliary dataset and is applied without adaptation to the target dataset. In this paper we identify an inher-ent limitation with this approach. That is, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift prob-lem and propose a novel framework, transductive multi-view embedding, to solve it. It is ‘transductive ’ in that unlabelled target data points are explored for projection adaptation, and ‘multi-view ’ in that both low-level feature (view) and multiple semantic representations (views) are embedded to rectify the projection shift. We demonstrate through ex-tensive experiments that our framework (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complemen-tarity of multiple semantic representations, (3) achieves state-of-the-art recognition results on image and video benchmark datasets, and (4) en-ables novel cross-view annotation tasks.

    DDAM-PS: Diligent Domain Adaptive Mixer for Person Search

    Full text link
    Person search (PS) is a challenging computer vision problem where the objective is to achieve joint optimization for pedestrian detection and re-identification (ReID). Although previous advancements have shown promising performance in the field under fully and weakly supervised learning fashion, there exists a major gap in investigating the domain adaptation ability of PS models. In this paper, we propose a diligent domain adaptive mixer (DDAM) for person search (DDAP-PS) framework that aims to bridge a gap to improve knowledge transfer from the labeled source domain to the unlabeled target domain. Specifically, we introduce a novel DDAM module that generates moderate mixed-domain representations by combining source and target domain representations. The proposed DDAM module encourages domain mixing to minimize the distance between the two extreme domains, thereby enhancing the ReID task. To achieve this, we introduce two bridge losses and a disparity loss. The objective of the two bridge losses is to guide the moderate mixed-domain representations to maintain an appropriate distance from both the source and target domain representations. The disparity loss aims to prevent the moderate mixed-domain representations from being biased towards either the source or target domains, thereby avoiding overfitting. Furthermore, we address the conflict between the two subtasks, localization and ReID, during domain adaptation. To handle this cross-task conflict, we forcefully decouple the norm-aware embedding, which aids in better learning of the moderate mixed-domain representation. We conduct experiments to validate the effectiveness of our proposed method. Our approach demonstrates favorable performance on the challenging PRW and CUHK-SYSU datasets. Our source code is publicly available at \url{https://github.com/mustansarfiaz/DDAM-PS}.Comment: Accepted in WACV-2024. Code is here at \url{https://github.com/mustansarfiaz/DDAM-P

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Causally Regularized Learning with Agnostic Data Selection Bias

    Full text link
    Most of previous machine learning algorithms are proposed based on the i.i.d. hypothesis. However, this ideal assumption is often violated in real applications, where selection bias may arise between training and testing process. Moreover, in many scenarios, the testing data is not even available during the training process, which makes the traditional methods like transfer learning infeasible due to their need on prior of test distribution. Therefore, how to address the agnostic selection bias for robust model learning is of paramount importance for both academic research and real applications. In this paper, under the assumption that causal relationships among variables are robust across domains, we incorporate causal technique into predictive modeling and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm by jointly optimize global confounder balancing and weighted logistic regression. Global confounder balancing helps to identify causal features, whose causal effect on outcome are stable across domains, then performing logistic regression on those causal features constructs a robust predictive model against the agnostic bias. To validate the effectiveness of our CRLR algorithm, we conduct comprehensive experiments on both synthetic and real world datasets. Experimental results clearly demonstrate that our CRLR algorithm outperforms the state-of-the-art methods, and the interpretability of our method can be fully depicted by the feature visualization.Comment: Oral paper of 2018 ACM Multimedia Conference (MM'18
    • …
    corecore