2 research outputs found

    Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network

    Full text link
    Distributed learning is an effective way to analyze big data. In distributed regression, a typical approach is to divide the big data into multiple blocks, apply a base regression algorithm on each of them, and then simply average the output functions learnt from these blocks. Since the average process will decrease the variance, not the bias, bias correction is expected to improve the learning performance if the base regression algorithm is a biased one. Regularization kernel network is an effective and widely used method for nonlinear regression analysis. In this paper we will investigate a bias corrected version of regularization kernel network. We derive the error bounds when it is applied to a single data set and when it is applied as a base algorithm in distributed regression. We show that, under certain appropriate conditions, the optimal learning rates can be reached in both situations

    Optimal Rates of Distributed Regression with Imperfect Kernels

    Full text link
    Distributed machine learning systems have been receiving increasing attentions for their efficiency to process large scale data. Many distributed frameworks have been proposed for different machine learning tasks. In this paper, we study the distributed kernel regression via the divide and conquer approach. This approach has been proved asymptotically minimax optimal if the kernel is perfectly selected so that the true regression function lies in the associated reproducing kernel Hilbert space. However, this is usually, if not always, impractical because kernels that can only be selected via prior knowledge or a tuning process are hardly perfect. Instead it is more common that the kernel is good enough but imperfect in the sense that the true regression can be well approximated by but does not lie exactly in the kernel space. We show distributed kernel regression can still achieves capacity independent optimal rate in this case. To this end, we first establish a general framework that allows to analyze distributed regression with response weighted base algorithms by bounding the error of such algorithms on a single data set, provided that the error bounds has factored the impact of the unexplained variance of the response variable. Then we perform a leave one out analysis of the kernel ridge regression and bias corrected kernel ridge regression, which in combination with the aforementioned framework allows us to derive sharp error bounds and capacity independent optimal rates for the associated distributed kernel regression algorithms. As a byproduct of the thorough analysis, we also prove the kernel ridge regression can achieve rates faster than Nβˆ’1N^{-1} (where NN is the sample size) in the noise free setting which, to our best knowledge, are first observed and novel in regression learning.Comment: 2 figure
    corecore