1,095 research outputs found

    C-axis lattice dynamics in Bi-based cuprate superconductors

    Full text link
    We present results of a systematic study of the c axis lattice dynamics in single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both experimental data obtained by spectral ellipsometry on single crystals and theoretical calculations. The calculations are carried out within the framework of a classical shell model, which includes long-range Coulomb interactions and short-range interactions of the Buckingham form in a system of polarizable ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve good agreement between the calculated A2u eigenfrequencies and the experimental values of the c axis TO phonon frequencies which allows us to make a reliable phonon mode assignment for all three Bi-based cuprate superconductors. We also present the results of our shell model calculations for the Gamma-point A1g symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is based on the published experimental Raman spectra. The superconductivity-induced phonon anomalies recently observed in the c axis infrared and resonant Raman scattering spectra in trilayer Bi2223 are consistently explained with the suggested assignment.Comment: 29 pages, 13 figure

    Effects of Pb doping on structural and electronics properties of Bi2_2Sr2_2Ca2_2Cu3_3O10_{10}

    Full text link
    Pb doping effect in the Bi2_2Sr2_2Ca2_2Cu3_3O10_{10} compound (Bi2223) on the structural and electronic properties were investigated, using the Local Density (LDA) and Virtual Crystal (VCA) approximations within the framework of the Density Functional Theory (DFT), taking as reference the procedure implemented by H.Lin {\it et al.} in the Bi2212 compound [{\it Phys. Rev. Lett.} {\bf 96} (2006) 097001]. Results show that, the incorporation of Pb-dopant in Bi2223 lead a rigid displacement of the Bi/Pb-O bands toward higher energies, with a null contribution at the Fermi level, around the high symmetry point M\overline{\text{M}} in the irreducible Brillouin zone, for Pb doping concentration equal to or more than 26\%, avoiding the presence of the so-called Bi-O {\it pockets} in the Fermi surface, in good agreement with angle-resolved photoemission spectroscopy (ARPES) and nuclear magnetic resonance (NMR) experiments, although a slight metallic character of the Bi-O bonds is still observed which would disagree with some experimental reports. The calculations show that the changes on the structural properties are associated to the presence or absence of the Bi-O {\it pockets} in the Fermi surfaceComment: 12 pages, 7 Figures, 1 tabl

    Quasiparticles and Energy Scaling in Bi2_2Sr2_2Can1_{n-1}Cun_nO2n+4_{2n+4} (n\it{n}=1-3): Angle-Resolved Photoemission Spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) has been performed on the single- to triple-layered Bi-family high-{\it Tc_c} superconductors (Bi2_2Sr2_2Can1_{n-1}Cun_nO2n+4_{2n+4}, n\it{n}=1-3). We found a sharp quasiparticle peak as well as a pseudogap at the Fermi level in the triple-layered compound. Comparison among three compounds has revealed a universal rule that the characteristic energies of superconducting and pseudogap behaviors are scaled with the maximum {\it Tc_c}.Comment: 4 pages, 4 figure

    Electronic structure of the trilayer cuprate superconductor Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta}

    Full text link
    The low-energy electronic structure of the trilayer cuprate superconductor Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} near optimal doping is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface, and the superconducting d-wave gap and coherence peak are observed and compared with those of single and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with TcT_c for various optimally doped materials. This suggests that the higher TcT_c of the trilayer system should be attributed to parameters that simultaneously enhance phase stiffness and pairing strength.Comment: 5 pages, 5 figre

    History effect in inhomogeneous superconductors

    Full text link
    A model was proposed to account for a new kind of history effect in the transport measurement of a sample with inhomogeneous flux pinning coupled with flux creep. The inhomogeneity of flux pinning was described in terms of alternating weak pinning (lower jc) and strong pinning region (higher jc). The flux creep was characterized by logarithmic barrier. Based on this model, we numerically observed the same clockwise V-I loops as reported in references. Moreover, we predicted behaviors of the V-I loop at different sweeping rates of applied current dI/dt or magnetic fields Ba, etc. Electric transport measurement was performed in Ag-sheathed Bi2-xPbxSr2Ca2Cu3Oy tapes immersed in liquid nitrogen with and without magnetic fields. V-I loop at certain dI/dt and Ba was observed. It is found that the area of the loop is more sensitive to dI/dt than to Ba, which is in agreement well with our numerical results.Comment: To appear in Phys Rev B, October 1 Issu

    In-plane optical spectral weight transfer in optimally doped Bi2_{2}Sr2_{2}Ca2_{2}Cu3_{3}O10_{10}

    Full text link
    We examine the redistribution of the in-plane optical spectral weight in the normal and superconducting state in tri-layer \bbb (Bi2223) near optimal doping (TcT_c = 110 K) on a single crystal via infrared reflectivity and spectroscopic ellipsometry. We report the temperature dependence of the low-frequency integrated spectral weight W(Ωc)W(\Omega_c) for different values of the cutoff energy Ωc\Omega_c. Two different model-independent analyses consistently show that for Ωc\Omega_c = 1 eV, which is below the charge transfer gap, W(Ωc)W(\Omega_c) increases below TcT_c, implying the lowering of the kinetic energy of the holes. This is opposite to the BCS scenario, but it follows the same trend observed in the bi-layer compound \bb (Bi2212). The size of this effect is larger in Bi2223 than in Bi2212, approximately scaling with the critical temperature. In the normal state, the temperature dependence of W(Ωc)W(\Omega_c) is close to T2T^2 up to 300 K

    A comparative study of high-field diamagnetic fluctuations in deoxygenated YBa2Cu3O(7-x) and polycrystalline (Bi-Pb)2Sr2Ca3O(10)

    Full text link
    We studied three single crystals of YBa2Cu3O{7-x} with Tc= 62.5, 52, and 41 K, and a textured specimen of (Bi-Pb)2Sr2Ca2Cu3O10 with Tc=108 K, for H//c axis. The reversible data were interpreted in terms of 2D lowest-Landau-level fluctuation theory. The data were fit well by the 2D LLL expression for magnetization obtained by Tesanovic etal., producing reasonable values of kappa but larger values of dHc2/dT. Universality was studied by obtaining a simultaneous scaling of Y123 data and Bi2223. An expression for the 2D x-axis LLL scaling factor used to obtain the simultaneous scaling was extracted from theory, and compared with the experimental values. The comparison between the values of the x-axis produced a deviation of 40% which suggests that the hypothesis of universality of the 2D-LLL fluctuations is not supported by the studied samples. We finaly observe that Y123 magnetization data for temperatures above TcT_c obbey a universal scaling obtained for the diamagnetic fluctuation magnetization from a theory considering non-local field effects. The same scaling was not obbeyed by the corresponding magnetization calculated from the two-dimensional lowest-Landau-level theory.Comment: 7 pages 5 figures, accept in Journ. Low Temp. Phy

    Diamagnetism above Tc in underdoped Bi2.2Sr1.8Ca2Cu3O10+d

    Full text link
    Single crystals of Bi2+xSr2xCa2Cu3O10+δ{\rm Bi}_{2+x}{\rm Sr}_{2-x}{\rm Ca}_{2}{\rm Cu}_{3}{\rm O}_{10+\delta}(Bi2223) with x=0.2x=0.2 were grown by a traveling solvent floating zone method in order to investigate the superconducting properties of highly underdoped Bi2223.Grown crystals were characterized by X-ray diffraction, DC susceptibility and resistivity measurements, confirming Bi2223 to be the main phase.The crystals were annealed under various oxygen partial pressures to adjust their carrier densities from optimally doped to highly underdoped.The fluctuation diamagnetic component above the superconducting transition temperature TcT_{\rm c} extracted from the anisotropic normal state susceptibilities χab(T)\chi_{ab}(T) (HcH\perp c) and χc(T)\chi_{c}(T) (HcH\parallel c) was found to increase with underdoping, suggesting a decrease in the superconducting dimensionality and/or increase in the fluctuating vortex liquid region.Comment: 6 pages, 7 figures, corrected fig.4 and references, published in J. Phys. Soc. Jpn. 79, 114711 (2010
    corecore