23,568 research outputs found

    Pose-Invariant 3D Face Alignment

    Full text link
    Face alignment aims to estimate the locations of a set of landmarks for a given image. This problem has received much attention as evidenced by the recent advancement in both the methodology and performance. However, most of the existing works neither explicitly handle face images with arbitrary poses, nor perform large-scale experiments on non-frontal and profile face images. In order to address these limitations, this paper proposes a novel face alignment algorithm that estimates both 2D and 3D landmarks and their 2D visibilities for a face image with an arbitrary pose. By integrating a 3D deformable model, a cascaded coupled-regressor approach is designed to estimate both the camera projection matrix and the 3D landmarks. Furthermore, the 3D model also allows us to automatically estimate the 2D landmark visibilities via surface normals. We gather a substantially larger collection of all-pose face images to evaluate our algorithm and demonstrate superior performances than the state-of-the-art methods

    Extension of Sparse Randomized Kaczmarz Algorithm for Multiple Measurement Vectors

    Full text link
    The Kaczmarz algorithm is popular for iteratively solving an overdetermined system of linear equations. The traditional Kaczmarz algorithm can approximate the solution in few sweeps through the equations but a randomized version of the Kaczmarz algorithm was shown to converge exponentially and independent of number of equations. Recently an algorithm for finding sparse solution to a linear system of equations has been proposed based on weighted randomized Kaczmarz algorithm. These algorithms solves single measurement vector problem; however there are applications were multiple-measurements are available. In this work, the objective is to solve a multiple measurement vector problem with common sparse support by modifying the randomized Kaczmarz algorithm. We have also modeled the problem of face recognition from video as the multiple measurement vector problem and solved using our proposed technique. We have compared the proposed algorithm with state-of-art spectral projected gradient algorithm for multiple measurement vectors on both real and synthetic datasets. The Monte Carlo simulations confirms that our proposed algorithm have better recovery and convergence rate than the MMV version of spectral projected gradient algorithm under fairness constraints
    • …
    corecore