7,300 research outputs found

    Face Alignment in the Wild.

    Get PDF
    PhDFace alignment on a face image is a crucial step in many computer vision applications such as face recognition, verification and facial expression recognition. In this thesis we present a collection of methods for face alignment in real-world scenarios where the acquisition of the face images cannot be controlled. We first investigate local based random regression forest methods that work in a voting fashion. We focus on building better quality random trees, first, by using privileged information and second, in contrast to using explicit shape models, by incorporating spatial shape constraints within the forests. We also propose a fine-tuning scheme that sieves and/or aggregates regression forest votes before accumulating them into the Hough space. We then investigate holistic methods and propose two schemes, namely the cascaded regression forests and the random subspace supervised descent method (RSSDM). The former uses a regression forest as the primitive regressor instead of random ferns and an intelligent initialization scheme. The RSSDM improves the accuracy and generalization capacity of the popular SDM by using several linear regressions in random subspaces. We also propose a Cascaded Pose Regression framework for face alignment in different modalities, that is RGB and sketch images, based on a sketch synthesis scheme. Finally, we introduce the concept of mirrorability which describes how an object alignment method behaves on mirror images in comparison to how it behaves on the original ones. We define a measure called mirror error to quantitatively analyse the mirrorability and show two applications, namely difficult samples selection and cascaded face alignment feedback that aids a re-initialisation scheme. The methods proposed in this thesis perform better or comparable to state of the art methods. We also demonstrate the generality by applying them on similar problems such as car alignment.China Scholarship Counci

    Occlusion Coherence: Detecting and Localizing Occluded Faces

    Full text link
    The presence of occluders significantly impacts object recognition accuracy. However, occlusion is typically treated as an unstructured source of noise and explicit models for occluders have lagged behind those for object appearance and shape. In this paper we describe a hierarchical deformable part model for face detection and landmark localization that explicitly models part occlusion. The proposed model structure makes it possible to augment positive training data with large numbers of synthetically occluded instances. This allows us to easily incorporate the statistics of occlusion patterns in a discriminatively trained model. We test the model on several benchmarks for landmark localization and detection including challenging new data sets featuring significant occlusion. We find that the addition of an explicit occlusion model yields a detection system that outperforms existing approaches for occluded instances while maintaining competitive accuracy in detection and landmark localization for unoccluded instances

    Mirror, mirror on the wall, tell me, is the error small?

    Full text link
    Do object part localization methods produce bilaterally symmetric results on mirror images? Surprisingly not, even though state of the art methods augment the training set with mirrored images. In this paper we take a closer look into this issue. We first introduce the concept of mirrorability as the ability of a model to produce symmetric results in mirrored images and introduce a corresponding measure, namely the \textit{mirror error} that is defined as the difference between the detection result on an image and the mirror of the detection result on its mirror image. We evaluate the mirrorability of several state of the art algorithms in two of the most intensively studied problems, namely human pose estimation and face alignment. Our experiments lead to several interesting findings: 1) Surprisingly, most of state of the art methods struggle to preserve the mirror symmetry, despite the fact that they do have very similar overall performance on the original and mirror images; 2) the low mirrorability is not caused by training or testing sample bias - all algorithms are trained on both the original images and their mirrored versions; 3) the mirror error is strongly correlated to the localization/alignment error (with correlation coefficients around 0.7). Since the mirror error is calculated without knowledge of the ground truth, we show two interesting applications - in the first it is used to guide the selection of difficult samples and in the second to give feedback in a popular Cascaded Pose Regression method for face alignment.Comment: 8 pages, 9 figure
    • …
    corecore