9,522 research outputs found

    Topic modeling-based domain adaptation for system combination

    Get PDF
    This paper gives the system description of the domain adaptation team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). We used the results of unsupervised document classification as meta information to the system combination module. For the Spanish-English data, our strategy achieved 26.33 BLEU points, 0.33 BLEU points absolute improvement over the standard confusion-network-based system combination. This was the best score in terms of BLEU among six participants in ML4HMT-12

    Adaptive text mining: Inferring structure from sequences

    Get PDF
    Text mining is about inferring structure from sequences representing natural language text, and may be defined as the process of analyzing text to extract information that is useful for particular purposes. Although hand-crafted heuristics are a common practical approach for extracting information from text, a general, and generalizable, approach requires adaptive techniques. This paper studies the way in which the adaptive techniques used in text compression can be applied to text mining. It develops several examples: extraction of hierarchical phrase structures from text, identification of keyphrases in documents, locating proper names and quantities of interest in a piece of text, text categorization, word segmentation, acronym extraction, and structure recognition. We conclude that compression forms a sound unifying principle that allows many text mining problems to be tacked adaptively
    corecore