23,682 research outputs found

    Path Planning for Continuum Rods Using Bernstein Surfaces

    Full text link
    This paper presents a method for optimal motion planning of continuum robots by employing Bernstein surfaces to approximate the system's dynamics and impose complex constraints, including collision avoidance. The main contribution is the approximation of infinite-dimensional continuous problems into their discrete counterparts, facilitating their solution using standard optimization solvers. This discretization leverages the unique properties of Bernstein surface, providing a framework that extends previous works which focused on ODEs approximated by Bernstein polynomials. Numerical validations are conducted through several numerical scenarios. The presented methodology offers a promising direction for solving complex optimal control problems in the realm of soft robotics

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-BĂ©zier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-BĂ©zier polynomials with respect to the entire domain. From the degenerate Bernstein-BĂ©zier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented

    Optimizing Memory-Bounded Controllers for Decentralized POMDPs

    Full text link
    We present a memory-bounded optimization approach for solving infinite-horizon decentralized POMDPs. Policies for each agent are represented by stochastic finite state controllers. We formulate the problem of optimizing these policies as a nonlinear program, leveraging powerful existing nonlinear optimization techniques for solving the problem. While existing solvers only guarantee locally optimal solutions, we show that our formulation produces higher quality controllers than the state-of-the-art approach. We also incorporate a shared source of randomness in the form of a correlation device to further increase solution quality with only a limited increase in space and time. Our experimental results show that nonlinear optimization can be used to provide high quality, concise solutions to decentralized decision problems under uncertainty.Comment: Appears in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007
    • …
    corecore