200 research outputs found

    Differentially Private Functional Summaries via the Independent Component Laplace Process

    Full text link
    In this work, we propose a new mechanism for releasing differentially private functional summaries called the Independent Component Laplace Process, or ICLP, mechanism. By treating the functional summaries of interest as truly infinite-dimensional objects and perturbing them with the ICLP noise, this new mechanism relaxes assumptions on data trajectories and preserves higher utility compared to classical finite-dimensional subspace embedding approaches in the literature. We establish the feasibility of the proposed mechanism in multiple function spaces. Several statistical estimation problems are considered, and we demonstrate by slightly over-smoothing the summary, the privacy cost will not dominate the statistical error and is asymptotically negligible. Numerical experiments on synthetic and real datasets demonstrate the efficacy of the proposed mechanism

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Differentially Private Synthetic Heavy-tailed Data

    Full text link
    The U.S. Census Longitudinal Business Database (LBD) product contains employment and payroll information of all U.S. establishments and firms dating back to 1976 and is an invaluable resource for economic research. However, the sensitive information in LBD requires confidentiality measures that the U.S. Census in part addressed by releasing a synthetic version (SynLBD) of the data to protect firms' privacy while ensuring its usability for research activities, but without provable privacy guarantees. In this paper, we propose using the framework of differential privacy (DP) that offers strong provable privacy protection against arbitrary adversaries to generate synthetic heavy-tailed data with a formal privacy guarantee while preserving high levels of utility. We propose using the K-Norm Gradient Mechanism (KNG) with quantile regression for DP synthetic data generation. The proposed methodology offers the flexibility of the well-known exponential mechanism while adding less noise. We propose implementing KNG in a stepwise and sandwich order, such that new quantile estimation relies on previously sampled quantiles, to more efficiently use the privacy-loss budget. Generating synthetic heavy-tailed data with a formal privacy guarantee while preserving high levels of utility is a challenging problem for data curators and researchers. However, we show that the proposed methods can achieve better data utility relative to the original KNG at the same privacy-loss budget through a simulation study and an application to the Synthetic Longitudinal Business Database
    corecore