3,475 research outputs found

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Icanlearn: A Mobile Application For Creating Flashcards And Social Stories\u3csup\u3etm\u3c/sup\u3e For Children With Autistm

    Get PDF
    The number of children being diagnosed with Autism Spectrum Disorder (ASD) is on the rise, presenting new challenges for their parents and teachers to overcome. At the same time, mobile computing has been seeping its way into every aspect of our lives in the form of smartphones and tablet computers. It seems only natural to harness the unique medium these devices provide and use it in treatment and intervention for children with autism. This thesis discusses and evaluates iCanLearn, an iOS flashcard app with enough versatility to construct Social StoriesTM. iCanLearn provides an engaging, individualized learning experience to children with autism on a single device, but the most powerful way to use iCanLearn is by connecting two or more devices together in a teacher-learner relationship. The evaluation results are presented at the end of the thesis

    Metrics and benchmarks in human-robot interaction: Recent advances in cognitive robotics

    Get PDF
    International audienceRobots are having an important growing role in human social life, which requires them to be able to behave appropriately to the context of interaction so as to create a successful long-term human-robot relationship. A major challenge in developing intelligent systems , which could enhance the interactive abilities of robots, is defining clear metrics and benchmarks for the different aspects of human-robot interaction, like human and robot skills and performances, which could facilitate comparing between systems and avoid application-biased evaluations based on particular measures. The point of evaluating robotic systems through metrics and benchmarks, in addition to some recent frameworks and technologies that could endow robots with advanced cognitive and communicative abilities, are discussed in this technical report that covers the outcome of our recent workshop on current advances in cognitive robotics: Towards Intelligent Social Robots-Current Advances in Cognitive Robotics, in conjunction with the 15th IEEE-RAS Humanoids Conference-Seoul-South Korea-2015 (https://intelligent-robots-ws.ensta-paristech.fr/). Additionally, a summary of an interactive discussion session between the workshop participants and the invited speakers about different issues related to cognitive robotics research is reported

    Robust Continuous System Integration for Critical Deep-Sea Robot Operations Using Knowledge-Enabled Simulation in the Loop

    Full text link
    Deep-sea robot operations demand a high level of safety, efficiency and reliability. As a consequence, measures within the development stage have to be implemented to extensively evaluate and benchmark system components ranging from data acquisition, perception and localization to control. We present an approach based on high-fidelity simulation that embeds spatial and environmental conditions from recorded real-world data. This simulation in the loop (SIL) methodology allows for mitigating the discrepancy between simulation and real-world conditions, e.g. regarding sensor noise. As a result, this work provides a platform to thoroughly investigate and benchmark behaviors of system components concurrently under real and simulated conditions. The conducted evaluation shows the benefit of the proposed work in tasks related to perception and self-localization under changing spatial and environmental conditions.Comment: published on IROS 201

    The development of numerical cognition in children and artificial systems: a review of the current knowledge and proposals for multi-disciplinary research

    Get PDF
    Numerical cognition is a distinctive component of human intelligence such that the observation of its practice provides a window into high-level brain function. The modelling of numerical abilities in artificial cognitive systems can help to confirm existing child development hypotheses and define new ones by means of computational simulations. Meanwhile, new research will help to discover innovative principles for the design of artificial agents with advanced reasoning capabilities and clarify the underlying algorithms (e.g. deep learning) that can be highly effective but difficult to understand for humans. This article promotes new investigation by providing a common resource for researchers with different backgrounds, including computer science, robotics, neuroscience, psychology, and education, who are interested in pursuing scientific collaboration on mutually stimulating research on this topic. The article emphasises the fundamental role of embodiment in the initial development of numerical cognition in children. This strong relationship with the body motivates the Cognitive Developmental Robotics (CDR) approach for new research that can (among others) help to standardise data collection and provide open databases for benchmarking computational models. Furthermore, we discuss the potential application of robots in classrooms and argue that the CDR approach can be extended to assist educators and favour mathematical education

    Learning Deep Features for Robotic Inference from Physical Interactions

    Get PDF
    In order to effectively handle multiple tasks that are not pre-defined, a robotic agent needs to automatically map its high-dimensional sensory inputs into useful features. As a solution, feature learning has empirically shown substantial improvements in obtaining representations that are generalizable to different tasks, compared to feature engineering approaches, but it requires a large amount of data and computational capacity. These challenges are specifically relevant in robotics due to the low signal-to-noise ratios inherent to robotic data, and to the cost typically associated with collecting this type of input. In this paper, we propose a deep probabilistic method based on Convolutional Variational Auto-Encoders (CVAEs) to learn visual features suitable for interaction and recognition tasks. We run our experiments on a self-supervised robotic sensorimotor dataset. Our data was acquired with the iCub humanoid and is based on a standard object collection, thus being readily extensible. We evaluated the learned features in terms of usability for 1) object recognition, 2) capturing the statistics of the effects, and 3) planning. In addition, where applicable, we compared the performance of the proposed architecture with other state-ofthe-art models. These experiments demonstrate that our model is capable of capturing the functional statistics of action and perception (i.e. images) which performs better than existing baselines, without requiring millions of samples or any handengineered features
    • …
    corecore