451 research outputs found

    Fast moving of a population of robots through a complex scenario

    Get PDF
    Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied

    Emerging robot swarm traffic

    Get PDF
    We discuss traffic patterns generated by swarms of robots while commuting to and from a base station. The overall question is whether to explicitly organise the traffic or whether a certain regularity develops `naturally'. Human driven motorized traffic is rigidly structured in two lanes. However, army ants develop a three-lane pattern in their traffic, while human pedestrians generate a main trail and secondary trials in either direction. Our robot swarm approach is bottom-up: designing individual agents we first investigate the mathematics of cases occurring when applying the artificial potential field method to three 'perfect' robots. We show that traffic lane pattern will not be disturbed by the internal system of forces. Next, we define models of sensor designs to account for the practical fact that robots (and ants) have limited visibility and compare the sensor models in groups of three robots. In the final step we define layouts of a highway: an unbounded open space, a trail with surpassable edges and a hard defined (walled) highway. Having defined the preliminaries we run swarm simulations and look for emerging traffic patterns. Apparently, depending on the initial situation a variety of lane patterns occurs, however, high traffic densities do delay the emergence of traffic lanes considerably. Overall we conclude that regularities do emerge naturally and can be turned into an advantage to obtain efficient robot traffic

    Biomimetic Algorithms for Coordinated Motion: Theory and Implementation

    Full text link
    Drawing inspiration from flight behavior in biological settings (e.g. territorial battles in dragonflies, and flocking in starlings), this paper demonstrates two strategies for coverage and flocking. Using earlier theoretical studies on mutual motion camouflage, an appropriate steering control law for area coverage has been implemented in a laboratory test-bed equipped with wheeled mobile robots and a Vicon high speed motion capture system. The same test-bed is also used to demonstrate another strategy (based on local information), termed topological velocity alignment, which serves to make agents move in the same direction. The present work illustrates the applicability of biological inspiration in the design of multi-agent robotic collectives
    • …
    corecore