45,251 research outputs found

    Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones

    Get PDF
    In this paper, two state of the art virtual sensor algorithms, i.e. the Remote Microphone Technique (RMT) and the Kalman filter based Virtual Sensing algorithm (KVS) are compared, in both state space (SS) and finite impulse response (FIR) implementations. The comparison focuses on the accuracy of the estimated sound pressure signals at the virtual locations and is based on actual measurements in a practical situation. The FIR implementation of the RMT algorithm was found to produce the most reliable results. It is implemented in a local, three dimensional, real-time, multiple-channel, broadband active noise control system. With this implementation, the benefits and limitations of the RMT-ANC system on the shape and size of the quiet zones are investigated

    A novel deconvolution beamforming algorithm for virtual phased arrays

    No full text
    Beamforming techniques using phased microphone arrays are one of the most common tools for localizing and quantifying noise sources. However, the use of such devices can result in a series of well-known disadvantages regarding, for instance, their very high cost or transducer mismatch. Virtual Phased Arrays (VPAs) have been proposed as an alternative solution to prevent these difficulties provided the sound field is time stationary. Several frequency domain beamforming techniques can be adapted to only use the relative phase between a fixed and a moving transducer. Therefore the results traditionally obtained using large arrays can be emulated by applying beamforming algorithms to data acquired from only two sensors. This paper presents a novel beamforming algorithm which uses a deconvolution approach to strongly reduce the presence of side lobes. A series of synthetic noise sources with negative source strength are introduced in order to maximize the dynamic range of the beamforming deconvolved map. This iterative sidelobe cleaner algorithm (ISCA) does not require the of use of the covariance matrix of the array, hence it can also be applied to a VPA. The performance of ISCA is compared throughout several simulations with conventional deconvolution algorithms such as DAMAS and NNLS. The results support the robustness and accuracy of the proposed approach, providing clear localization maps in all the conditions evaluated

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies
    corecore