4,365 research outputs found

    An application of decision trees method for fault diagnosis of induction motors

    Get PDF
    Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for these data

    Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

    Get PDF
    Safe and reliable operations of industrial machines are highly prioritized in industry. Typical industrial machines are complex systems, including electric motors, gearboxes and loads. A fault in critical industrial machines may lead to catastrophic failures, service interruptions and productivity losses, thus condition monitoring systems are necessary in such machines. The conventional condition monitoring or fault diagnosis systems using signal processing, time and frequency domain analysis of vibration or current signals are widely used in industry, requiring expensive and professional fault analysis team. Further, the traditional diagnosis methods mainly focus on single components in steady-state operations. Under dynamic operating conditions, the measured quantities are non-stationary, thus those methods cannot provide reliable diagnosis results for complex gearbox based powertrains, especially in multiple fault contexts. In this dissertation, four main research topics or problems in condition monitoring of gearboxes and powertrains have been identified, and novel solutions are provided based on data-driven approach. The first research problem focuses on bearing fault diagnosis at early stages and dynamic working conditions. The second problem is to increase the robustness of gearbox mixed fault diagnosis under noise conditions. Mixed fault diagnosis in variable speeds and loads has been considered as third problem. Finally, the limitation of labelled training or historical failure data in industry is identified as the main challenge for implementing data-driven algorithms. To address mentioned problems, this study aims to propose data-driven fault diagnosis schemes based on order tracking, unsupervised and supervised machine learning, and data fusion. All the proposed fault diagnosis schemes are tested with experimental data, and key features of the proposed solutions are highlighted with comparative studies.publishedVersio

    Intelligent Bearing Fault Diagnosis Method Combining Mixed Input and Hybrid CNN-MLP model

    Full text link
    Rolling bearings are one of the most widely used bearings in industrial machines. Deterioration in the condition of rolling bearings can result in the total failure of rotating machinery. AI-based methods are widely applied in the diagnosis of rolling bearings. Hybrid NN-based methods have been shown to achieve the best diagnosis results. Typically, raw data is generated from accelerometers mounted on the machine housing. However, the diagnostic utility of each signal is highly dependent on the location of the corresponding accelerometer. This paper proposes a novel hybrid CNN-MLP model-based diagnostic method which combines mixed input to perform rolling bearing diagnostics. The method successfully detects and localizes bearing defects using acceleration data from a shaft-mounted wireless acceleration sensor. The experimental results show that the hybrid model is superior to the CNN and MLP models operating separately, and can deliver a high detection accuracy of 99,6% for the bearing faults compared to 98% for CNN and 81% for MLP models

    Classification of bearing faults through time-frequency analysis and image processing

    Get PDF
    The present work proposes a new technique for bearing fault classification that combines time-frequency analysis with image processing. This technique uses vibration signals from bearing housings to detect bearing conditions and classify the faults. By means of Empirical Mode Decomposition (EMD), each vibration signal is decomposed into Intrinsic Mode Functions (IMFs). Principal Components Analysis (PCA) is then performed on the matrix of the decomposed IMFs and the important principal components are chosen. The spectrogram is obtained for each component by means of the Short Time Fourier Transform (STFT) to obtain an image that represents the time-frequency relationship of the main components of the analyzed signal. Furthermore, Image Moments are extracted from the spectrogram images of principal components in order to obtain an array of features for each signal that can be handled by the classification algorithm. 8 images are selected for each signal and 17 moments for each image, so an array of 136 features is associated with every signal. Finally, the classification is performed using a standard machine learning technique, i.e. Support Vector Machine (SVM), in the proposed technique. The dataset used in this work include data collected for various rotating speeds and loads, in order to obtain a set of different operating conditions, by a Roller Bearing Faults Simulator. The results have shown that the developed technique provides classification effectively, with a single classifier, of bearing faults characterized by different rotating speeds and different loads

    Continuous wavelet transform and neural network for condition monitoring of rotodynamic machinery

    Get PDF
    This paper describes a novel method of rotodynamic machine condition monitoring using a wavelet transform and a neural network. A continuous wavelet transform is applied to the signals collected from accelerometer. The transformed images are then extracted as unique characteristic features relating to the various types of machine conditions. In the experiment, four types of machine operating conditions have been investigated: a balanced shaft; an unbalanced shaft, a misaligned shaft and a defective bearing. The back propagation neural network (BPNN) is used as a tool to evaluate the performance of the proposed method. The experimental results result in a recognition rate of 90 percent
    corecore