5 research outputs found

    Beagle as a HOL4 external ATP method

    Get PDF
    International audienceThis paper presents BEAGLE TAC, a HOL4 tactic for using Beagle as an external ATP for discharging HOL4 goals. We implement a translation of the higher-order goals to the TFA format of TPTP and add trace output to Beagle to reconstruct the intermediate steps derived by the ATP in HOL4. Our translation combines the characteristics of existing successful translations from HOL to FOL and SMT-LIB; however, we needed to adapt certain stages of the translation in order to benefit form the expressiveness of the TFA format and the power of Beagle. In our initial experiments, we demonstrate that our system can prove, without any arithmetic lemmas, 81% of the goals solved by Metis

    Premise Selection and External Provers for HOL4

    Full text link
    Learning-assisted automated reasoning has recently gained popularity among the users of Isabelle/HOL, HOL Light, and Mizar. In this paper, we present an add-on to the HOL4 proof assistant and an adaptation of the HOLyHammer system that provides machine learning-based premise selection and automated reasoning also for HOL4. We efficiently record the HOL4 dependencies and extract features from the theorem statements, which form a basis for premise selection. HOLyHammer transforms the HOL4 statements in the various TPTP-ATP proof formats, which are then processed by the ATPs. We discuss the different evaluation settings: ATPs, accessible lemmas, and premise numbers. We measure the performance of HOLyHammer on the HOL4 standard library. The results are combined accordingly and compared with the HOL Light experiments, showing a comparably high quality of predictions. The system directly benefits HOL4 users by automatically finding proofs dependencies that can be reconstructed by Metis

    GRUNGE: A Grand Unified ATP Challenge

    Full text link
    This paper describes a large set of related theorem proving problems obtained by translating theorems from the HOL4 standard library into multiple logical formalisms. The formalisms are in higher-order logic (with and without type variables) and first-order logic (possibly with multiple types, and possibly with type variables). The resultant problem sets allow us to run automated theorem provers that support different logical formats on corresponding problems, and compare their performances. This also results in a new "grand unified" large theory benchmark that emulates the ITP/ATP hammer setting, where systems and metasystems can use multiple ATP formalisms in complementary ways, and jointly learn from the accumulated knowledge.Comment: CADE 27 -- 27th International Conference on Automated Deductio
    corecore