25,120 research outputs found

    Bayesian Deep Net GLM and GLMM

    Full text link
    Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely used in the literature, perhaps because of the computational challenges of incorporating subject specific parameters into already complex models. Efficient computational methods for high-dimensional Bayesian inference are developed using Gaussian variational approximation, with a parsimonious but flexible factor parametrization of the covariance matrix. We implement natural gradient methods for the optimization, exploiting the factor structure of the variational covariance matrix in computation of the natural gradient. Our flexible DFNN models and Bayesian inference approach lead to a regression and classification method that has a high prediction accuracy, and is able to quantify the prediction uncertainty in a principled and convenient way. We also describe how to perform variable selection in our deep learning method. The proposed methods are illustrated in a wide range of simulated and real-data examples, and the results compare favourably to a state of the art flexible regression and classification method in the statistical literature, the Bayesian additive regression trees (BART) method. User-friendly software packages in Matlab, R and Python implementing the proposed methods are available at https://github.com/VBayesLabComment: 35 pages, 7 figure, 10 table

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Deep Exponential Families

    Full text link
    We describe \textit{deep exponential families} (DEFs), a class of latent variable models that are inspired by the hidden structures used in deep neural networks. DEFs capture a hierarchy of dependencies between latent variables, and are easily generalized to many settings through exponential families. We perform inference using recent "black box" variational inference techniques. We then evaluate various DEFs on text and combine multiple DEFs into a model for pairwise recommendation data. In an extensive study, we show that going beyond one layer improves predictions for DEFs. We demonstrate that DEFs find interesting exploratory structure in large data sets, and give better predictive performance than state-of-the-art models

    Bayesian variable selection using cost-adjusted BIC, with application to cost-effective measurement of quality of health care

    Full text link
    In the field of quality of health care measurement, one approach to assessing patient sickness at admission involves a logistic regression of mortality within 30 days of admission on a fairly large number of sickness indicators (on the order of 100) to construct a sickness scale, employing classical variable selection methods to find an ``optimal'' subset of 10--20 indicators. Such ``benefit-only'' methods ignore the considerable differences among the sickness indicators in cost of data collection, an issue that is crucial when admission sickness is used to drive programs (now implemented or under consideration in several countries, including the U.S. and U.K.) that attempt to identify substandard hospitals by comparing observed and expected mortality rates (given admission sickness). When both data-collection cost and accuracy of prediction of 30-day mortality are considered, a large variable-selection problem arises in which costly variables that do not predict well enough should be omitted from the final scale. In this paper (a) we develop a method for solving this problem based on posterior model odds, arising from a prior distribution that (1) accounts for the cost of each variable and (2) results in a set of posterior model probabilities that corresponds to a generalized cost-adjusted version of the Bayesian information criterion (BIC), and (b) we compare this method with a decision-theoretic cost-benefit approach based on maximizing expected utility. We use reversible-jump Markov chain Monte Carlo (RJMCMC) methods to search the model space, and we check the stability of our findings with two variants of the MCMC model composition (MC3\mathit{MC}^3) algorithm.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS207 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore