360,571 research outputs found

    A Bayesian Framework for Collaborative Multi-Source Signal Detection

    Full text link
    This paper introduces a Bayesian framework to detect multiple signals embedded in noisy observations from a sensor array. For various states of knowledge on the communication channel and the noise at the receiving sensors, a marginalization procedure based on recent tools of finite random matrix theory, in conjunction with the maximum entropy principle, is used to compute the hypothesis selection criterion. Quite remarkably, explicit expressions for the Bayesian detector are derived which enable to decide on the presence of signal sources in a noisy wireless environment. The proposed Bayesian detector is shown to outperform the classical power detector when the noise power is known and provides very good performance for limited knowledge on the noise power. Simulations corroborate the theoretical results and quantify the gain achieved using the proposed Bayesian framework.Comment: 15 pages, 9 pictures, Submitted to IEEE Trans. on Signal Processin

    An excess power statistic for detection of burst sources of gravitational radiation

    Get PDF
    We examine the properties of an excess power method to detect gravitational waves in interferometric detector data. This method is designed to detect short-duration (< 0.5 s) burst signals of unknown waveform, such as those from supernovae or black hole mergers. If only the bursts' duration and frequency band are known, the method is an optimal detection strategy in both Bayesian and frequentist senses. It consists of summing the data power over the known time interval and frequency band of the burst. If the detector noise is stationary and Gaussian, this sum is distributed as a chi-squared (non-central chi-squared) deviate in the absence (presence) of a signal. One can use these distributions to compute frequentist detection thresholds for the measured power. We derive the method from Bayesian analyses and show how to compute Bayesian thresholds. More generically, when only upper and/or lower bounds on the bursts duration and frequency band are known, one must search for excess power in all concordant durations and bands. Two search schemes are presented and their computational efficiencies are compared. We find that given reasonable constraints on the effective duration and bandwidth of signals, the excess power search can be performed on a single workstation. Furthermore, the method can be almost as efficient as matched filtering when a large template bank is required. Finally, we derive generalizations of the method to a network of several interferometers under the assumption of Gaussian noise.Comment: 22 pages, 6 figure

    The power of Bayesian evidence in astronomy

    Full text link
    We discuss the use of the Bayesian evidence ratio, or Bayes factor, for model selection in astronomy. We treat the evidence ratio as a statistic and investigate its distribution over an ensemble of experiments, considering both simple analytical examples and some more realistic cases, which require numerical simulation. We find that the evidence ratio is a noisy statistic, and thus it may not be sensible to decide to accept or reject a model based solely on whether the evidence ratio reaches some threshold value. The odds suggested by the evidence ratio bear no obvious relationship to the power or Type I error rate of a test based on the evidence ratio. The general performance of such tests is strongly affected by the signal to noise ratio in the data, the assumed priors, and the threshold in the evidence ratio that is taken as `decisive'. The comprehensiveness of the model suite under consideration is also very important. The usefulness of the evidence ratio approach in a given problem can be assessed in advance of the experiment, using simple models and numerical approximations. In many cases, this approach can be as informative as a much more costly full-scale Bayesian analysis of a complex problem.Comment: 11 pages; MNRAS in pres

    Decision Making for Inconsistent Expert Judgments Using Negative Probabilities

    Full text link
    In this paper we provide a simple random-variable example of inconsistent information, and analyze it using three different approaches: Bayesian, quantum-like, and negative probabilities. We then show that, at least for this particular example, both the Bayesian and the quantum-like approaches have less normative power than the negative probabilities one.Comment: 14 pages, revised version to appear in the Proceedings of the QI2013 (Quantum Interactions) conferenc
    corecore