46 research outputs found

    Practical Bayesian Optimization for Variable Cost Objectives

    Full text link
    We propose a novel Bayesian Optimization approach for black-box functions with an environmental variable whose value determines the tradeoff between evaluation cost and the fidelity of the evaluations. Further, we use a novel approach to sampling support points, allowing faster construction of the acquisition function. This allows us to achieve optimization with lower overheads than previous approaches and is implemented for a more general class of problem. We show this approach to be effective on synthetic and real world benchmark problems.Comment: 8 pages, 7 figure

    Unscented Bayesian Optimization for Safe Robot Grasping

    Full text link
    We address the robot grasp optimization problem of unknown objects considering uncertainty in the input space. Grasping unknown objects can be achieved by using a trial and error exploration strategy. Bayesian optimization is a sample efficient optimization algorithm that is especially suitable for this setups as it actively reduces the number of trials for learning about the function to optimize. In fact, this active object exploration is the same strategy that infants do to learn optimal grasps. One problem that arises while learning grasping policies is that some configurations of grasp parameters may be very sensitive to error in the relative pose between the object and robot end-effector. We call these configurations unsafe because small errors during grasp execution may turn good grasps into bad grasps. Therefore, to reduce the risk of grasp failure, grasps should be planned in safe areas. We propose a new algorithm, Unscented Bayesian optimization that is able to perform sample efficient optimization while taking into consideration input noise to find safe optima. The contribution of Unscented Bayesian optimization is twofold as if provides a new decision process that drives exploration to safe regions and a new selection procedure that chooses the optimal in terms of its safety without extra analysis or computational cost. Both contributions are rooted on the strong theory behind the unscented transformation, a popular nonlinear approximation method. We show its advantages with respect to the classical Bayesian optimization both in synthetic problems and in realistic robot grasp simulations. The results highlights that our method achieves optimal and robust grasping policies after few trials while the selected grasps remain in safe regions.Comment: conference pape

    Anomaly Detection and Removal Using Non-Stationary Gaussian Processes

    Full text link
    This paper proposes a novel Gaussian process approach to fault removal in time-series data. Fault removal does not delete the faulty signal data but, instead, massages the fault from the data. We assume that only one fault occurs at any one time and model the signal by two separate non-parametric Gaussian process models for both the physical phenomenon and the fault. In order to facilitate fault removal we introduce the Markov Region Link kernel for handling non-stationary Gaussian processes. This kernel is piece-wise stationary but guarantees that functions generated by it and their derivatives (when required) are everywhere continuous. We apply this kernel to the removal of drift and bias errors in faulty sensor data and also to the recovery of EOG artifact corrupted EEG signals.Comment: 9 pages, 14 figure

    Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters

    Full text link
    Bayesian optimisation has gained great popularity as a tool for optimising the parameters of machine learning algorithms and models. Somewhat ironically, setting up the hyper-parameters of Bayesian optimisation methods is notoriously hard. While reasonable practical solutions have been advanced, they can often fail to find the best optima. Surprisingly, there is little theoretical analysis of this crucial problem in the literature. To address this, we derive a cumulative regret bound for Bayesian optimisation with Gaussian processes and unknown kernel hyper-parameters in the stochastic setting. The bound, which applies to the expected improvement acquisition function and sub-Gaussian observation noise, provides us with guidelines on how to design hyper-parameter estimation methods. A simple simulation demonstrates the importance of following these guidelines.Comment: 16 pages, 1 figur
    corecore