4 research outputs found

    Modeling of pipeline corrosion degradation mechanism with a Lรฉvy Process based on ILI (In-Line) inspections

    Get PDF
    International audienceIn pipelines, one of the primary testing procedures used to identify the eโ†ตects and evolution of corrosion over time is through In-Line Inspections (ILI). ILI inspections provide detailed information regarding the inner and outer pipeline condition based on the remaining wall thickness. Based on this information, diโ†ตerent approaches have been proposed to predict the degradation extent of the defects detected. However, these predictions are subject of uncertainties due to the inspection tool and the degradation process that poses some challenges for assessing an entire pipeline within the timespan between two inspections. To address this problem, ILI data was used to formulate a degradation model for steel-pipe degradation based on a Mixed Lรฉvy Process. The model combines a Gamma and Compound Poisson Processes aimed for a better description of the degradation reported by the ILI data. The model seeks to estimate corrosion lifetime distribution and the mean time to failure (MTTF) more accurately. The model was tested on an actual segment of an oil pipeline, and the results have been used to support a preventive maintenance program

    Risk-based evaluation of pitting corrosion in process facilities

    Get PDF
    Pitting is one of the most challenging forms of corrosion to study and model due to complex pit behavior. Pitting can occur in different engineering alloys and can lead to catastrophic consequences. Pits are usually latent or difficult-to-detect and resulting degradation often causes in-service failure of process equipment. Therefore, the ability to predict pit behavior is key to design and maintenance of assets. In particular, pitting corrosion is a significant challenge in marine environments and offshore operations due to remoteness of operations and hidden damage under insulations. Thus, the ability to assess risk and estimate remaining life of assets affected by pitting corrosion is necessary for timely maintenance and safe operation of assets. This thesis proposes a methodology to assess and dynamically update the risk of pressurized components affected by pitting corrosion. To take into consideration the time-dependent growth of pits, the application of non-homogenous Markov process is proposed to model the maximum pit depth. The integration of the developed maximum pit model into a pressureresistance model is proposed to predict the failure probability of affected components. An economic consequence analysis model is developed to estimate both business and accidental losses due to failure of the affected component. Then, risk is estimated by integrating models developed for probability of failure and associated consequences. The application of Bayesian analysis is proposed to update estimated risk as new inspection data gets available and also as economic condition of the process evolves. This work also proposes a risk management strategy including corrosion prevention, control and monitoring measures to make effective decision related to pitting corrosion. The application of the proposed methods is demonstrated using different case studies

    A Framework for Remaining Useful Life Prediction of Steam Turbines Applicable to Various Data Types

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2018. 8. ์œค๋ณ‘๋™.์ตœ๊ทผ ๋ฐœ์ „์‚ฌ๊ฐ„ ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•ด์ง์— ๋”ฐ๋ผ ๋ฐœ์ „ ์‚ฐ์—…์—์„œ๋Š” ์šด์ „ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ณ  ํ•ต์‹ฌ ์„ค๋น„์˜ ์ˆ˜๋ช…์„ ์—ฐ์žฅํ•˜๋Š”๋ฐ ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ด๊ณ  ์žˆ๋‹ค. ํ•œํŽธ ์šด์ „ ์‹œ๊ฐ„์ด ์„ค๊ณ„ ์ˆ˜๋ช…์— ๊ทผ์ ‘ํ•จ์— ๋”ฐ๋ผ ์ฆ๊ธฐํ„ฐ๋นˆ๊ณผ ๊ฐ™์€ ํ•ต์‹ฌ ์„ค๋น„์˜ ์—ดํ™”๊ฐ€ ๊ฐ€์†๋˜๊ณ  ํฌ๊ณ  ์ž‘์€ ๊ณ ์žฅ์ด ๋งŽ์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ๊ฐ€์†ํ™”๋œ ์—ดํ™”๋‚˜ ์˜ˆ๊ธฐ์น˜ ๋ชปํ•œ ์†์ƒ์œผ๋กœ ๋ฐœ์ „์†Œ๊ฐ€ ์ •์ง€๋˜๋ฉด ๋ง‰๋Œ€ํ•œ ๊ฒฝ์ œ์  ์†์‹ค๊ณผ ๊ตญ๊ฐ€์ ์ธ ์žฌํ•ด๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ์•ˆ์ •์ ์ธ ์„ค๋น„์˜ ์šด์ „์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๋“ค์ด ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์ตœ๊ทผ ๋“ค์–ด ๋”์šฑ ๋งŽ์€ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋Š” ์‹œ์Šคํ…œ ๊ฑด์ „์„ฑ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์€ ํšจ๊ณผ์ ์œผ๋กœ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋ฅผ ๊ฐ์ง€, ์ง„๋‹จ, ๊ทธ๋ฆฌ๊ณ  ์˜ˆ์ง€ํ•˜์—ฌ ๊ด€๋ฆฌ์ž๊ฐ€ ์œ ์ง€ ๋ณด์ˆ˜์— ์žˆ์–ด ํ•„์š”ํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค€๋‹ค. ํŠนํžˆ ์ตœ์  ์œ ์ง€์ •๋น„ ๊ด€์ ์—์„œ ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ์˜ˆ์ธก๋œ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์€ ์„ค๋น„ ์ˆ˜๋ช…์— ์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํšจ๊ณผ์ ์ธ ์œ ์ง€ ์ •๋น„๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ฆ๊ธฐ ํ„ฐ๋นˆ์€ ๋ฐœ์ „์†Œ ์ˆ˜๋ช…์„ ๊ฒฐ์ •ํ•˜๋Š” ํ•ต์‹ฌ ์„ค๋น„์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ์ „์†Œ์˜ ์ตœ์  ์šด์˜์„ ์œ„ํ•ด ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ์šด์ „ ์ค‘์ธ ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ด์— ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” (1) ์ฆ๊ธฐ ํ„ฐ๋นˆ์— ๋Œ€ํ•œ ๊ณ ์žฅ๋ชจ๋“œ์˜ํ–ฅ๋ถ„์„๊ณผ ์—ฐ๊ณ„ํ•œ ์ž”์กด์œ ํšจ์ˆ˜๋ช… ์˜ˆ์ธก ํ”„๋ ˆ์ž„์›Œํฌ, ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ (2) ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ (๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ), (3) ํฌ๋ฆฌํ”„-ํ”ผ๋กœ ์†์ƒ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•œ ๋ชจ๋“œ ์˜์กด ์†์ƒ ๋ชจ๋ธ (๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ) ๋“ฑ์˜ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์žฅ๋ชจ๋“œ์˜ํ–ฅ๋ถ„์„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ์˜ˆ์ธกํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ธก์ •๋œ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฉ๋ฒ•๋ก ๊ณผ ์†์ƒ ๋ชจ๋ธ์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์˜คํ”„๋ผ์ธ์ด๋‚˜ ์˜จ๋ผ์ธ๊ณผ ๊ฐ™์ด ๋‹ค๋ฅธ ๋ชฉ์ ์œผ๋กœ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ์˜ˆ์ธกํ•  ๋•Œ ๋ถˆํ™•์‹ค๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ๋ถˆํ™•์‹ค๋„๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ์ ˆ์ฐจ๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•ด ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ž”์กด์œ ํšจ์ˆ˜๋ช…์€ ์†์ƒ ์ธ์ž๋กœ๋ถ€ํ„ฐ ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ์„ ์—ฐ๊ณ„ํ•˜์—ฌ ์˜ˆ์ธกํ•œ๋‹ค. ํ˜„์žฅ์—์„œ ์ธก์ •๋œ ๊ฒฝ๋„๊ฐ’์œผ๋กœ๋ถ€ํ„ฐ ์†์ƒ์ธ์ž์˜ ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์†์ƒ์˜ ์„ฑ์žฅ์„ ํ‰๊ฐ€ํ•  ๋•Œ ๋ถˆํ™•์‹ค๋„๋ฅผ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋ฒ ์ด์ง€์•ˆ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ์„ ํ†ตํ•ด ๊ธฐ์ €๋ถ€ํ•˜๋‚˜ ์ฒจ๋‘๋ถ€ํ•˜์— ์‚ฌ์šฉ๋˜๋Š” ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ข…๋ฅ˜์— ์ƒ๊ด€์—†์ด ์ •ํ™•ํ•œ ์ž”์กด์œ ํšจ์ˆ˜๋ช… ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•ด ํฌ๋ฆฌํ”„์™€ ํ”ผ๋กœ ์ƒํ˜ธ์ž‘์šฉ์ด ๊ณ ๋ ค๋œ ๋ชจ๋“œ ๊ธฐ๋ฐ˜ ์†์ƒ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์†์ƒ๊ธฐ๊ตฌ์— ๋”ฐ๋ฅธ ์žฌ๋ฃŒ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ์‹ค ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ํ˜•์ƒ ์ •๋ณด์™€ ์šด์ „์ •๋ณด๋ฅผ ์ด์šฉํ•ด ๊ธฐ์ €๋ถ€ํ•˜์™€ ์ฒจ๋‘๋ถ€ํ•˜ ํ„ฐ๋นˆ์„ ๋Œ€์ƒ์œผ๋กœ ํฌ๋ฆฌํ”„ ๋ฐ ํ”ผ๋กœ ์†์ƒ์œจ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ฐ๊ฐ ๊ณ„์‚ฐ๋œ ์†์ƒ์œจ ๊ฒฐ๊ณผ์™€ ํฌ๋ฆฌํ”„-ํ”ผ๋กœ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์„ ํ†ตํ•ด ์šด์ „๋ชจ๋“œ ๋˜๋Š” ์†์ƒ๋ชจ๋“œ์— ๋”ฐ๋ฅธ ์ฆ๊ธฐํ„ฐ๋นˆ์—์„œ์˜ ํฌ๋ฆฌํ”„์™€ ํ”ผ๋กœ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. Abstract i List of Tables viii List of Figures x Nomenclatures xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 8 2.1 Life Prediction Methodologies of Steam Turbine 8 2.1.1 Destructive Method 11 2.1.2 Non-destructive Method 11 2.1.3 Analytical Method 13 2.1.4 Summary and Discussion 13 2.2 Data-driven and Model-based Life Prediction 15 2.2.1 Data-driven Approach 21 2.2.2 Model-based Approach 21 2.3 Empirical Model-based Life Prediction 15 2.3.1 On-site Data Measurement 18 2.3.2 Bayesian Inference 19 2.3.3 Summary and Discussion 20 2.4 Damage Model-based Life Prediction 21 2.4.1 Creep or Fatigue Damage Model Analysis 22 2.4.2 Creep-Fatigue Damage Summation Model analysis 23 2.4.3 Summary and Discussion 27 Chapter 3 A Practical RUL Prediction Framework of Steam Turbine with FMEA Analysis 28 3.1 Overview of Steam Turbines 28 3.2 FMEA for Steam Turbines 31 3.3 A Framework for RUL Prediction of Steam Turbine 34 3.4 Summay and Discussion 38 Chapter 4 A Bayesian Approach for RUL Prediction of Steam Turbines with Damage Growth Model 39 4.1 Characteristics of On-site Measurement Data 40 4.2 Measured Data based Damage Indices 46 4.3 Damage Growth Model using Sporadically Measured and Heterogeneous On-site Data 51 4.3.1 Proposed Damage Growth Model 51 4.3.2 Bayesian Updating Scheme of the Damage Growth Model 58 4.3.3 Damage Growth Model Updating 60 4.4 Predicting the Remaining Useful Life(RUL) of Steam Turbines 68 4.4.1 Damage Threshold 68 4.4.2 Validation of the Proposed Damage Growth Model 72 4.4.3 RUL Prediction 74 4.5 Summary and Discussion 78 Chapter 5 Mode-Dependent Damage Assessment for Steam Turbines with Creep-Fatigue Interaction Model 80 5.1 Dominant Damage Mechanisms of Steam Turbine 82 5.2 Typical Opeation Data of Steam Turbine 83 5.3 Dominant Damage Model of Steam Turbine 86 5.3.1 Creep Damage Model 86 5.3.2 Fatigue Damage Model 88 5.3.3 Creep-Fatigue Damage Model 90 5.4 Statiatical Damage Calculation for Steam Turbine 91 5.4.1 Statistical Characterization of Creep-Fatigue Damage Data 91 5.4.2 Creep Damage Calculation with Steady State Stress 94 5.4.3 Fatigue Damage Calculation with Transient Strain 95 5.5 Mode-Dependent Multiple Damage Interaction Model 100 5.5.1 Estimation of Damage Interaction Parameters 100 5.5.2 Validation of Mode-Dependent Model 101 5.5.3 Effect of Mode-dependence Effects on Multiple Damage 104 5.5.4 Case Study : Risk Assessment 108 5.6 Summary and Discussion 111 Chapter 6 Conclusions 113 6.1 Contributions and Impacts 113 6.2 Suggestions for Future Research 116 References 119 ๊ตญ๋ฌธ ์ดˆ๋ก 142Docto

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore