402,409 research outputs found

    Bayesian factor analysis

    Get PDF
    Also appeared in the University of Chicago series as Report 7322, Center for Mathematical Studies in Business and Economics, Department of Economics and Graduate School of Business, April 1973.Bibliography: leaf 33.by Gordon M. Kaufman and S. James Press

    Bayesian Sparse Factor Analysis of Genetic Covariance Matrices

    Get PDF
    Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene expression where the number of traits assayed per individual can reach many thousand. Here, we derive a Bayesian genetic sparse factor model for estimating the genetic covariance matrix (G-matrix) of high-dimensional traits, such as gene expression, in a mixed effects model. The key idea of our model is that we need only consider G-matrices that are biologically plausible. An organism's entire phenotype is the result of processes that are modular and have limited complexity. This implies that the G-matrix will be highly structured. In particular, we assume that a limited number of intermediate traits (or factors, e.g., variations in development or physiology) control the variation in the high-dimensional phenotype, and that each of these intermediate traits is sparse -- affecting only a few observed traits. The advantages of this approach are two-fold. First, sparse factors are interpretable and provide biological insight into mechanisms underlying the genetic architecture. Second, enforcing sparsity helps prevent sampling errors from swamping out the true signal in high-dimensional data. We demonstrate the advantages of our model on simulated data and in an analysis of a published Drosophila melanogaster gene expression data set.Comment: 35 pages, 7 figure

    Bayesian exploratory factor analysis

    Get PDF
    This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. (authors' abstract

    Nonparametric Bayesian Negative Binomial Factor Analysis

    Full text link
    A common approach to analyze a covariate-sample count matrix, an element of which represents how many times a covariate appears in a sample, is to factorize it under the Poisson likelihood. We show its limitation in capturing the tendency for a covariate present in a sample to both repeat itself and excite related ones. To address this limitation, we construct negative binomial factor analysis (NBFA) to factorize the matrix under the negative binomial likelihood, and relate it to a Dirichlet-multinomial distribution based mixed-membership model. To support countably infinite factors, we propose the hierarchical gamma-negative binomial process. By exploiting newly proved connections between discrete distributions, we construct two blocked and a collapsed Gibbs sampler that all adaptively truncate their number of factors, and demonstrate that the blocked Gibbs sampler developed under a compound Poisson representation converges fast and has low computational complexity. Example results show that NBFA has a distinct mechanism in adjusting its number of inferred factors according to the sample lengths, and provides clear advantages in parsimonious representation, predictive power, and computational complexity over previously proposed discrete latent variable models, which either completely ignore burstiness, or model only the burstiness of the covariates but not that of the factors.Comment: To appear in Bayesian Analysi

    Dynamics and sparsity in latent threshold factor models: A study in multivariate EEG signal processing

    Full text link
    We discuss Bayesian analysis of multivariate time series with dynamic factor models that exploit time-adaptive sparsity in model parametrizations via the latent threshold approach. One central focus is on the transfer responses of multiple interrelated series to underlying, dynamic latent factor processes. Structured priors on model hyper-parameters are key to the efficacy of dynamic latent thresholding, and MCMC-based computation enables model fitting and analysis. A detailed case study of electroencephalographic (EEG) data from experimental psychiatry highlights the use of latent threshold extensions of time-varying vector autoregressive and factor models. This study explores a class of dynamic transfer response factor models, extending prior Bayesian modeling of multiple EEG series and highlighting the practical utility of the latent thresholding concept in multivariate, non-stationary time series analysis.Comment: 27 pages, 13 figures, link to external web site for supplementary animated figure

    Statistical methods for linguistic research: Foundational Ideas - Part II

    Full text link
    We provide an introductory review of Bayesian data analytical methods, with a focus on applications for linguistics, psychology, psycholinguistics, and cognitive science. The empirically oriented researcher will benefit from making Bayesian methods part of their statistical toolkit due to the many advantages of this framework, among them easier interpretation of results relative to research hypotheses, and flexible model specification. We present an informal introduction to the foundational ideas behind Bayesian data analysis, using, as an example, a linear mixed models analysis of data from a typical psycholinguistics experiment. We discuss hypothesis testing using the Bayes factor, and model selection using cross-validation. We close with some examples illustrating the flexibility of model specification in the Bayesian framework. Suggestions for further reading are also provided.Comment: 30 pages, 5 figures, 4 tables. Submitted to Language and Linguistics Compass. Comments and suggestions for improvement most welcom

    The Infinite Hierarchical Factor Regression Model

    Get PDF
    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis
    corecore