231,923 research outputs found
Bayesian computation via empirical likelihood
Approximate Bayesian computation (ABC) has become an essential tool for the
analysis of complex stochastic models when the likelihood function is
numerically unavailable. However, the well-established statistical method of
empirical likelihood provides another route to such settings that bypasses
simulations from the model and the choices of the ABC parameters (summary
statistics, distance, tolerance), while being convergent in the number of
observations. Furthermore, bypassing model simulations may lead to significant
time savings in complex models, for instance those found in population
genetics. The BCel algorithm we develop in this paper also provides an
evaluation of its own performance through an associated effective sample size.
The method is illustrated using several examples, including estimation of
standard distributions, time series, and population genetics models.Comment: 21 pages, 12 figures, revised version of the previous version with a
new titl
On computational tools for Bayesian data analysis
While Robert and Rousseau (2010) addressed the foundational aspects of
Bayesian analysis, the current chapter details its practical aspects through a
review of the computational methods available for approximating Bayesian
procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte
Carlo methods and more recently Approximate Bayesian Computation techniques
have considerably increased the potential for Bayesian applications and they
have also opened new avenues for Bayesian inference, first and foremost
Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert
Elicitation" edited by Klaus Bocker, 23 pages, 9 figure
Approximate Bayesian Computation by Subset Simulation
A new Approximate Bayesian Computation (ABC) algorithm for Bayesian updating
of model parameters is proposed in this paper, which combines the ABC
principles with the technique of Subset Simulation for efficient rare-event
simulation, first developed in S.K. Au and J.L. Beck [1]. It has been named
ABC- SubSim. The idea is to choose the nested decreasing sequence of regions in
Subset Simulation as the regions that correspond to increasingly closer
approximations of the actual data vector in observation space. The efficiency
of the algorithm is demonstrated in two examples that illustrate some of the
challenges faced in real-world applications of ABC. We show that the proposed
algorithm outperforms other recent sequential ABC algorithms in terms of
computational efficiency while achieving the same, or better, measure of ac-
curacy in the posterior distribution. We also show that ABC-SubSim readily
provides an estimate of the evidence (marginal likelihood) for posterior model
class assessment, as a by-product
Inverse Problems in a Bayesian Setting
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)
--- the propagation of uncertainty through a computational (forward) model ---
are strongly connected. In the form of conditional expectation the Bayesian
update becomes computationally attractive. We give a detailed account of this
approach via conditional approximation, various approximations, and the
construction of filters. Together with a functional or spectral approach for
the forward UQ there is no need for time-consuming and slowly convergent Monte
Carlo sampling. The developed sampling-free non-linear Bayesian update in form
of a filter is derived from the variational problem associated with conditional
expectation. This formulation in general calls for further discretisation to
make the computation possible, and we choose a polynomial approximation. After
giving details on the actual computation in the framework of functional or
spectral approximations, we demonstrate the workings of the algorithm on a
number of examples of increasing complexity. At last, we compare the linear and
nonlinear Bayesian update in form of a filter on some examples.Comment: arXiv admin note: substantial text overlap with arXiv:1312.504
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
Approximate Bayesian computation methods can be used to evaluate posterior
distributions without having to calculate likelihoods. In this paper we discuss
and apply an approximate Bayesian computation (ABC) method based on sequential
Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC
SMC gives information about the inferability of parameters and model
sensitivity to changes in parameters, and tends to perform better than other
ABC approaches. The algorithm is applied to several well known biological
systems, for which parameters and their credible intervals are inferred.
Moreover, we develop ABC SMC as a tool for model selection; given a range of
different mathematical descriptions, ABC SMC is able to choose the best model
using the standard Bayesian model selection apparatus.Comment: 26 pages, 9 figure
Regression approaches for Approximate Bayesian Computation
This book chapter introduces regression approaches and regression adjustment
for Approximate Bayesian Computation (ABC). Regression adjustment adjusts
parameter values after rejection sampling in order to account for the imperfect
match between simulations and observations. Imperfect match between simulations
and observations can be more pronounced when there are many summary statistics,
a phenomenon coined as the curse of dimensionality. Because of this imperfect
match, credibility intervals obtained with regression approaches can be
inflated compared to true credibility intervals. The chapter presents the main
concepts underlying regression adjustment. A theorem that compares theoretical
properties of posterior distributions obtained with and without regression
adjustment is presented. Last, a practical application of regression adjustment
in population genetics shows that regression adjustment shrinks posterior
distributions compared to rejection approaches, which is a solution to avoid
inflated credibility intervals.Comment: Book chapter, published in Handbook of Approximate Bayesian
Computation 201
- …
