623 research outputs found

    Modeling Asset Prices

    Get PDF
    As an asset is traded, its varying prices trace out an interesting time series. The price, at least in a general way, reflects some underlying value of the asset. For most basic assets, realistic models of value must involve many variables relating not only to the individual asset, but also to the asset class, the industrial sector(s) of the asset, and both the local economy and the general global economic conditions. Rather than attempting to model the value, we will confine our interest to modeling the price. The underlying assumption is that the price at which an asset trades is a "fair market price" that reflects the actual value of the asset. Our initial interest is in models of the price of a basic asset, that is, not the price of a derivative asset. Usually instead of the price itself, we consider the relative change in price, that is, the rate of return, over some interval of time. The purpose of asset pricing models is not for prediction of future prices; rather the purpose is to provide a description of the stochastic behavior of prices. Models of price changes have a number of uses, including, for investors, optimal construction of portfolios of assets and, for market regulators, maintaining a fair and orderly market. A major motivation for developing models of price changes of given assets is to use those models to develop models of fair value of derivative assets that depend on the given assets.Discrete time series models, continuous time diffusion models, models with jumps, stochastic volatility, GARCH

    Forecasting Realized Volatility with Linear and Nonlinear Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.neural networks;nonlinear models;financial econometrics;realized volatility;bagging;volatility forecasting

    Forecasting Realized Volatility with Linear and Nonlinear Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in this paper.Financial econometrics, volatility forecasting, neural networks, nonlinear models, realized volatility, bagging.

    Forecasting Realized Volatility with Linear and Nonlinear Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.

    "Forecasting Realized Volatility with Linear and Nonlinear Models"

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.

    Forecasting Realized Volatility with Linear and Nonlinear Univariate Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 futures. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed.Financial econometrics; volatility forecasting; neural networks; nonlinear models; realized volatility; bagging

    Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market

    Get PDF
    We propose a new joint model of intraday returns and durations to study the dynamics of several Chinese stocks. We include IBM from the U.S. market for comparison purposes. Flexible innovation distributions are used for durations and returns, and the total variance of returns is decomposed into different volatility components associated with different transaction horizons. Our new model strongly dominates existing specifications in the literature. The conditional hazard functions are non-monotonic and there is strong evidence for different volatility components. Although diurnal patterns, volatility components, and market microstructure implications are similar across the markets, there are interesting differences. Durations for lightly traded Chinese stocks tend to carry more information than heavily traded stocks. Chinese investors usually have longer investment horizons, which may be explained by the specific trading rules in China.market microstructure, transaction horizon, high-frequency data, ACD, GARCH

    Financial Risk Measurement for Financial Risk Management

    Get PDF
    Current practice largely follows restrictive approaches to market risk measurement, such as historical simulation or RiskMetrics. In contrast, we propose flexible methods that exploit recent developments in financial econometrics and are likely to produce more accurate risk assessments, treating both portfolio-level and asset-level analysis. Asset-level analysis is particularly challenging because the demands of real-world risk management in financial institutions - in particular, real-time risk tracking in very high-dimensional situations - impose strict limits on model complexity. Hence we stress powerful yet parsimonious models that are easily estimated. In addition, we emphasize the need for deeper understanding of the links between market risk and macroeconomic fundamentals, focusing primarily on links among equity return volatilities, real growth, and real growth volatilities. Throughout, we strive not only to deepen our scientific understanding of market risk, but also cross-fertilize the academic and practitioner communities, promoting improved market risk measurement technologies that draw on the best of both.Market risk, volatility, GARCH
    corecore