234,914 research outputs found
Bayesian optimization for materials design
We introduce Bayesian optimization, a technique developed for optimizing
time-consuming engineering simulations and for fitting machine learning models
on large datasets. Bayesian optimization guides the choice of experiments
during materials design and discovery to find good material designs in as few
experiments as possible. We focus on the case when materials designs are
parameterized by a low-dimensional vector. Bayesian optimization is built on a
statistical technique called Gaussian process regression, which allows
predicting the performance of a new design based on previously tested designs.
After providing a detailed introduction to Gaussian process regression, we
introduce two Bayesian optimization methods: expected improvement, for design
problems with noise-free evaluations; and the knowledge-gradient method, which
generalizes expected improvement and may be used in design problems with noisy
evaluations. Both methods are derived using a value-of-information analysis,
and enjoy one-step Bayes-optimality
BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits
BayesOpt is a library with state-of-the-art Bayesian optimization methods to
solve nonlinear optimization, stochastic bandits or sequential experimental
design problems. Bayesian optimization is sample efficient by building a
posterior distribution to capture the evidence and prior knowledge for the
target function. Built in standard C++, the library is extremely efficient
while being portable and flexible. It includes a common interface for C, C++,
Python, Matlab and Octave
- …
