234,914 research outputs found

    Bayesian optimization for materials design

    Full text link
    We introduce Bayesian optimization, a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian process regression, which allows predicting the performance of a new design based on previously tested designs. After providing a detailed introduction to Gaussian process regression, we introduce two Bayesian optimization methods: expected improvement, for design problems with noise-free evaluations; and the knowledge-gradient method, which generalizes expected improvement and may be used in design problems with noisy evaluations. Both methods are derived using a value-of-information analysis, and enjoy one-step Bayes-optimality

    BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits

    Get PDF
    BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlinear optimization, stochastic bandits or sequential experimental design problems. Bayesian optimization is sample efficient by building a posterior distribution to capture the evidence and prior knowledge for the target function. Built in standard C++, the library is extremely efficient while being portable and flexible. It includes a common interface for C, C++, Python, Matlab and Octave
    corecore