18,702 research outputs found

    Parameter Learning of Logic Programs for Symbolic-Statistical Modeling

    Full text link
    We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. definite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, that runs for a class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks that have been developed independently in each research field. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can significantly outperform the Inside-Outside algorithm

    Non-stationary continuous dynamic Bayesian networks

    Get PDF

    Raiders of the Lost Architecture: Kernels for Bayesian Optimization in Conditional Parameter Spaces

    Full text link
    In practical Bayesian optimization, we must often search over structures with differing numbers of parameters. For instance, we may wish to search over neural network architectures with an unknown number of layers. To relate performance data gathered for different architectures, we define a new kernel for conditional parameter spaces that explicitly includes information about which parameters are relevant in a given structure. We show that this kernel improves model quality and Bayesian optimization results over several simpler baseline kernels.Comment: 6 pages, 3 figures. Appeared in the NIPS 2013 workshop on Bayesian optimizatio
    • …
    corecore